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Abstract. We presenbi RNA, a novel algorithm for prediction of binding sites between two RNAs basealio-
imization of binding free energy. Similar ®NAup approach [29], we assume the binding free energy is the sum
of accessibility and the interaction free energies. Our algorithm maintaictsiiity and speed and also has two
important advantages over previous similar approaches: 1) it is abledapmultiple simultaneous binding sites
and 2) it computes a more accurate interaction free energy by congjdmth intramolecular and intermolecular
base pairing. Moreovebj RNA can handle crossing interactions as well as hairpins interacting in a zigzaigr.

To deal with simultaneous accessibility of binding sites, our algorithm modeisjtint probability of being un-
paired. Since computing the exact joint probability distribution is intractabéeapproximate the joint probability

by a polynomially representable graphical model namely a Chow-Litstreetured Markov Random Field. Exper-
imental results show thai RNA outperformsRNAup and also support the accuracy of our approach. Our proposed
Bayesian approximation of the Boltzmann joint probability distribution pravig@owerful, novel framework that
can also be utilized in other applications.

1 Introduction

RNA had been viewed as a simple working copy of the genomic D&idply transporting in-
formation from the genome into the proteins, until the di&y of ribozymes and the realization
that the ribosome is in fact an RNA machine. Following the neédscovery of RNA interference
(RNAI), the post transcriptional silencing of gene expressiia interactions between mRNAs and
their regulatory RNAs, RNA has moved from a side topic to a @mésearch topic.

More recent studies have shown that a large fraction of themge gives rise to RNA transcripts
that do not code for proteins [39]. Several of these nonygpdRNAs (ncRNAS) regulate gene
expression post-transcriptionally through base pairangd(establishing a joint structure) with a
target MRNA, as per the eukaryotic miRNAs and small interfei®NAs (SiRNAs), antisense
RNAs or bacterial small regulatory RNAs (SRNAs) [16]. In adutitio such endogenous regulatory
NcRNAs, antisense oligonucleotides have been used as exagarhibitors of gene expression;
antisense technology is now commonly used as a researcago@ll as for therapeutic purposes.
Furthermore, synthetic nucleic acids systems have beanesrgd to self assemble into complex
structures performing various dynamic mechanical motjdb§

A key tool for all the above advances is a fast, highly aceucaimputational method for pre-
dicting RNA-RNA interactions. Comprehensive methods for yriah binding thermodynamics
of nucleic acids are computationally expensive and praiady slow for real applications [1, 9].
Other existing methods suffer from a low specificity, posliiecause several of these methods
consider restricted versions of the problem (e.g. simpliéeergy functions or restricted types of
interactions) - this is mostly for computational reasons.

In this paper we present an algorithm to predict the binditesof two interacting RNA
strands. Our most important goal in this work is tractapis well as high specificity. While
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our algorithm considers the most general type of interastiat is still practically tractable by
making simplifying assumptions on the energy function. Shassumptions are however natural
and adopted by many other groups as well [1, 6, 22, 29, 40].eQperiments also support these
assumptions.

Our contribution

We give an algorithm to predict the binding sites of two iatging RNAs and also the interaction
secondary structure constrained by the predicted bindieg. $\s opposed to previous approaches
that are able to predict only one binding site [6, 29, 41], algorithm predicts multiple simulta-
neous binding sites. We define a binding site to be a subsequemich interacts with exactly one
binding site in the other strand. Crossing interactionsefen! pseudoknots) and zigzags (see [1]
for exact definition) are particularly allowed. To the befsbor knowledge, this allows for the most
general type of interactions considered in the literatAt#hough intramolecular pseudoknots are
not considered in the current work, they can be incorporetedour framework at the expense of
additional computational complexity.

Following RNAup approach [29], we assume the total interaction free enargyei sum of two
terms: 1) the free energy needed to make binding sites able=gs each molecule, and 2) the
free energy released as a result of intermolecular bonasei@mbetween the interacting binding
site pairs. Based on that energy model, our algorithm is ésfigrtomposed of three consecutive
steps: 1) building a tree-structured Markov Random Field (M®®Fapproximate accessibility of
a collection of potential binding sites, 2) computing pasgsvinteraction free energies between
potential binding sites of one strand against those of theraitrand, and 3) finding a minimum
free energy matching of binding sites. UnliREAup that computes only the hybridization partition
function for step 2, our algorithm computes the full intei@ac partition function [9]. Therefore,
our algorithm not only considers multiple binding sites bigo computes a more accurate free
energy of binding.

The time complexity of the first two steps @&(n°r + ms-+ nmw?) in which n andm denote
the lengths of sequences,denotes maximum binding site length, ang nw ands < mw are
the number of potential sites heuristically selected outhefO(nw) and O(mw) possible ones.
More importantly, the space complexity of the first two sté&p®©(r? + s> + nmw?). The third
step requires a nontrivial optimization namely minimum rggebipartite matching of two tree-
structured Markov Random Fields, a topic on which we are atligrevorking. In this paper, we
implement an exhaustive search for the third step. Thezetbe running time of the third step
is currentlyO(r*s*) wherek is the maximum number of simultaneous binding sites. Sinaed
sare small in our experiments, an exhaustive search ovelesipgir, and triple sites is feasible.
However, we are working on the matching problem and hopetheefind an efficient algorithm
for it or prove its hardness.

Related wor k

Since the initial works of Nussinov et al. [30] and Watermad &mith [44] several computational
methods have emerged to study the secondary structuredtgnamics of a single nucleic acid
molecule. Those initial works laid the foundation of modeamputational methods by adopting
a divide and conquer strategy. That view, which originakiibited itself in the form of a simple
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base pair counting energy function, has evolved into Neéa&degyhbor Thermodynamic model

which has become the standard energy model for a nucleicsecidndary structure [26]. The

standard energy model is based on the assumption that regalolise pairs and loop entropies
contribute additively to the free energy of a nucleic acidos®lary structure. Based on additivity
of the energy, efficient dynamic programming algorithmsgadicting the minimum free energy

secondary structure [30, 36, 44, 46] and computing thetartiunction of a single strand [14, 27]

have been developed.

Some previous attempts to analyze the thermodynamics dfpteuinteracting nucleic acids
concatenate input sequences in some order and considerathensingle strand. For example,
pai rf ol d [2] andRNAcof ol d from Vienna package [4] concatenate the two input sequantes
a single strand and predict its minimum free energy strectirks et al. present a method, as a
part of NUPack, that concatenates the input sequences in some ordemlbainsidering sym-
metry and sequence multiplicities, and computes the martitinction for the whole ensemble of
complex species [13]. However, concatenating the seqsascmt accurate at all as even if pseu-
doknots are considered, some useful interactions are deatlwhile many physically impossible
interactions are included. Several other methods, suéhls/bri d [34], UNAFol d [12, 24], and
RNAdupl ex from Vienna package [4], avoid intramolecular base-pgirmeither strand and com-
pute minimum free energy hybridization secondary strgctiihose approaches naturally work
only for simple cases involving typically very short strand

Alternatively, a number of studies aimed to take a more fumelstal stance and compute the
minimum free energy structure of two interacting strand$aurenergy models with growing com-
plexity. For instance, Pervouchine devised a dynamic mogning algorithm to maximize the
number of base pairs among interacting strands [32]. Aviallp work by Kato et al. proposed a
grammar based approach to RNA-RNA interaction predictioh [8re generally, Alkan et al. [1]
studied the joint secondary structure prediction problewhen three different models: 1) base pair
counting, 2) stacked pair energy model, and 3) loop energgeidlkan et al. proved that the
general RNA-RNA interaction prediction under all three egargpdels is an NP-hard problem.
Therefore, they suggested some natural constraints orogfzdogy of possible joint secondary
structures which are satisfied by all examples of complex HRM& interactions in the literature.
The resulting algorithms compute the minimum free energgsdary structure among all possible
joint secondary structures that do not contain (internsdugloknots, crossing interactions (i.e. ex-
ternal pseudoknots), armfzags (please see [1] for the exact definition). In our previouskn8i,
we gave an algorithmi RNA to compute the partition function, base pair probabiljteesd mini-
mum free energy structure over the type of interactionsAliiedn et al. considered. We extended
the standard energy model for a single RNA to an energy mod#élégoint secondary structure of
interacting strands by considering new types of (join)&nral components. Although RNA out-
performs existing alternatives, it h@§n®) time andO(n*) space complexity which is prohibitive
for many practical, particularly high-throughput, applions.

A third set of methods predict the secondary structure o @adividual RNA independently,
and predict the (most likely) hybridization between acit#esegions of the two molecules. More
sophisticated ones in this set view interaction as a mudp grocess [6, 29, 43]: 1) unfolding of
the two molecules to expose bases needed for hybridizatjotine hybridization at the binding
site, and 3) restructuring of the complex to a new minimune faergy conformation. Some ap-
proaches in this set, such bst aRNA [6] and RNAup [29], assume that binding happens at one
location. Therefore, they are able to predict only one ligdiite, which is not the case for some
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known interacting RNAs such as OxyS-fhlA and CopA-CopT [3, ZQ, i this paper, we consider
multiple binding sites.

2 Preliminaries

Our algorithm is based on the assumption that binding istigdly a stepwise process, a view that
has been proposed by others as well [1, 6,22, 29, 40]. In redtyeach nucleic acid molecule
has a secondary structure before taking part in any interacfo form an interaction, as the first
step the individual secondary structures are deformedatahie binding sites in both molecules
become unpaired. As the second step, pairwise matchingebatithe binding sites takes place.
Each step is associated with an energy the sum of which gneeérée energy of bindindG.
Specifically, denote the energy difference that is neededrpairingall the binding sitesin R and
S by EDR andED¢ respectively, and denote mGES the free energy that is released as a result of
binding. Similar to [29],

AG = ED{+EDJ +AGE. (1)

This assumption is intuitively plausible because each oudeneeds to reveal its interacting
parts before the actual binding happens; moreover, thesstips are assumed to be independent
from one another. Note that previous approaches suthtadNA [6], RNAup [29], andRNApl ex
[41] consider only one binding site in each molecule, whickes the problem easier, whereas we
consider multiple binding sites. It is sometimes arguedtigure does not usually favor too highly
entangled structures [29]. Our algorithm easily accomrtexian upper bound on the number of
potential binding sites, which is another advantage of ppra@ach.

To reduce the complexity, we assume that the length of a patémding site is not more than
a window sizew in this work. This is a reasonable assumption, which haskEso made in similar
approaches [29], as most known RNA-RNA interactions such asS@IA and CopA-CopT do
not exhibit lengthy binding sites [3, 20, 21]. We call a supsmsce of length not more thama
site.

3 Algorithm

Based on the assumption above, our progtamNA finds a combination of binding sites that
minimizesAG. Let 7R and /S denote the set of potential binding sites, which in our cagbé
collection of subsequences of length not more tlvaof R andS respectivelybi RNA is composed
of five consecutive steps:

(I) For every siteW = [i, j] in ¥R or 7S, compute the probabilitPX(W) or PS(W) thatW is
unpaired.

(1) For every paitVy andWs, compute the joint probabilitieBT(Ws, Wa) andPS(Wy, Ws) that sites
W; andW, are simultaneously unpaired.

(1) Build tree-structured Markov Random Fields (MRBEJR = (/R £R) and 75 = (7S, £5)
to approximate the joint probability distribution of mylke unpaired sites. Denote thE-
approximated joint probability of unpaired sitég,Wa, ... .\ Wk by Py (Wi, W, ... ,\W).

(V) ComputeQ\'NRWS, the interaction partition function restricted to subsagesVR andws, for
everyWR ¢ ¢Randws ¢ 75,
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(V) Find a non-overlapping matchingl = {(WR,WD), WRWS), ..., (WR,WS)} that minimizes
AG(M) = ED}(M) +EDg(M) +AGRS(M), in which

EDX(M) = —RT log P (W, WA, ... W) (2)

EDJ(M) = —RT logPy (W2, Wy, ... W) (3)

AGE(M) = —RT 5 109(Qlyays — QurQus)- (4)
1<k v

Above, R is the universal gas constant aids temperature. To demonstrate (2) and (3), let for
instancePR(WR WR ... \WR) be the exact probability that the sites are unpaired. In thse,
EDRWRWER, ... WR) = AGRWR WR ... . WR) —AGR, and

AGRWRWR ... WR) —AGR = —RT logQr (WR WR ... . WR) + RT logQr

WRWR . WR ©)

in which Qg is the partition function oR andQgr (W, WE, ..., WR) is the partition function of the
structures in whichWR WR, ... WR are unpaired.

In the following, we describe each step in more details. latiBa 3.1 we explain (I) and (I1)
above. Section 3.2 is dedicated to (lll) and also inferendeeie-structured Markov Random Fields
namely computind?;. In Section 3.3 we describe (1V). Finally, (V) is presentedbection 3.4.

= —RTlog

3.1 Accessibility of Site Pairs

As part of RNAup, Muckstein et al. present an efficient algorithm for computing probability

of an unpaired subsequence [29]. Their algorithm comptiegtobability of being unpaired for
all subsequences id(n%) time in whichn is the sequence length. BasedRiaup algorithm, we
present arO(n*w) time andO(n?) space complexity algorithm to compute the joint probabili-
ties of all unpaired site pairs. For every site, our algonitiises constrained McCaskill's [27] and
constrainekNAup algorithm to compute the conditional probabilities of aler unpaired subse-
quences. There a@(nw) sites for each of which the algorithm take$n?) time. For triple joint
probabilities, the same method is applicable but the ruptime will be multiplied by another
factor of O(nw). Therefore, we only compute pairwise probabilities andrapimate the whole
joint probability distribution by graphical models.

3.2 Simultaneous Accessibility of Multiple Sites

To deal with simultaneous accessibility of binding sites, mwust model their joint probability of
being unpaired. One way is to compute the exact joint prdibadistribution by using constrained
McCaskill's algorithm [22]. For every collection of sitetet algorithm has polynomial time com-
plexity, however, since there is an exponential numberféédint collections, this rige approach

is intractable. In this paper, we approximate the joint pimlity by a polynomially representable
graphical model namely a Markov Random Field. Graphical nsdecluding Bayesian Networks
and Markov Random Fields, are powerful tools for approxingajoint probabilities. They gen-
erally have enough expressive power which intuitively axp why the inference problem for
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general graphical models is NP-hard [11]. Fortunatelygl®an efficient inference algorithm for
tree-structured models [31]. In this work, we build a Chowr-ltiee, which is a tree-structured
Markov Random Field, to approximate the exact joint prolgtdistribution [10].

To describe the Chow-Liu algorithm, l&f be the complete weighted graph 61 the set of
potential binding sites, in which the weight of an edge betW; andW, is | (W, W), the mutual
information given by

) PO
(W)= 5 Phaxe)log (P(an(xZ)) ' ©
Xp€{Wo,~Wo}

Above,P(Wy, ~ W) is for instance the joint probability th¥l; is unpaired antl\; is not unpaired.
In Section 3.1, we explained how to compute the joint proliiagds of all site pairs. The following
equations use Bayes rule to calculate all the necessary feomsP(\W;,Wo): P(Wj, ~ Ws) =
P(Wi) — P(W,W5), P(~ Wi, Wo) = P(Wa) — P(Wp,W5), P(~ Wi, ~Wo) = 1—P(Wy) — P(Wa) +
P(Wi,Wo). The Chow-Liu treeT is the best tree-structured approximation for a joint plolis
distribution, in the sense that has the maximum mutual information with the joint probaili
distribution [10]. Chow and Liu proved thar is the maximum spanning tree gf. To compute
T, we use a standard maximum spanning tree algorithm such azel@ algorithm [7]. We
refer the reader to [17] or [31] for a detailed descriptiomndérence algorithm ir". In summary,
Pr(Wa,We, ... ,\Wk) is computed by marginalizing ove¥'\ {Wi,Ws, ... Wk} the joint probability
distribution defined byZ. There exists an efficient algorithm for inference whichgimO(|7/|)
time [17].

3.3 FreeEnergy of Interaction

The local free energy of interaction for a pair of si8 andw=is —RT log(Q}, r,ys — QurQws) in
which Q' is the interaction partition function restrictedw? andwS[9] andQ is McCaskill's par-
tition function restricted tdV. Note that a simple version @' would calculate only the hybridiza-
tion partition function betweewR andw? (see [29]); however, this would exclude any intramolec-
ular structure in the binding sites. For that reason, we us@pproach fofQ' which considers in-
termolecular as well as intramolecular structures. Ourifrembalgorithm is the dynamic program-
ming in [9] that starts withr = 1,Is= 1 and incrementally computes all the recursive quantifes u
to Ir = w,Is = w. Therefore, the windowed version of our interaction pamitfunction algorithm
hasO(nmw?) time andO(nmw?) space complexity, in which andmare the Iengths dR andSre-
spectively. Finally, for a non-overlapping matchikig= {(W1 RWS), (WRW), .. ,(WkR,Wks)} the
free energy of interaction IAGR(M) = —RT ¥ 1-log(Q! WRwS ~ QurQus). whereQ| r,,

QurQus is the partition function for those structures that congitat least one mtermolecular
bond. Note that is based on the simplifying assumption iniG@e8. A fundamental way to com-
pute the free energy of interaction for a matching of bindiitgs is through the interaction partition
function and the probabilities @' tables. However, that approach is intractable for long RNA se
quences mainly due t@(n’n¥) space requirement. In this paper, we replace the true freggn
of interaction with local one, which is shown to be a reastmapproximation in practice (see the
results in Section 4).



3.4 Binding Sites Matching

Having built the machinery to computsG for a matching of binding sites, we would like to

find a matching that minimize&G. To clarify the importance and difficulty of the problem, sup

pose the binding sites were independent so Bya\vi,Wo, ... W) = Py(Wh)Py(Wa) - - - Py (Wk).

In that case, the problem would reduce to finding a minimumghiebipartite matching with

weightWR, W) = —RT log[P}(WR)PR(WS) Q) ayys — Q\NRQNJS)]. There are efficient algorithms
(I !

for minimum weight bipartite matching, but the issue is tthet independence assumption is too
crude of an approximation. Therefore, we propose the foligwproblem, which has not been
solved to our knowledge:

Minimum Weight Chow-Liu Trees Matching Problem

Given a pair of Chow-Liu treeg R = (7R ER) and 7S = (7S, £5), compute a non-perfect match-
ing M between the nodes @R and ‘7S that minimizesAG(M).

Input: Chow-Liu treesTR and‘7S.

Output: A matchingM = {(WRWS), WRWS), ..., (WRWS)} ¢ R x 75,

The complexity of minimum weight Chow-Liu trees matching lgieom is currently unknown.
We are working on the problem, and we hope to either proveatdriess or give a polynomial
algorithm; we incline toward the latter though. In this pgpee implemented an exhaustive search
on the set of all collections of single, pair, and triple site

3.5 Complexity Analysis

Let n denote the length oR, m denote the length o8, andw denote the window length. Step
(I) of the algorithm take®(n® + m®) time andO(n? + n¥?) space. If we consider all site pairs,
then (I1) takesO(n*w 4 mfw) time andO(n?w? + mPw?) space to store the joint probabilities. It
is often reasonable to filter potential binding sites, fasreple based on the probability of being
unpaired or the interaction partition function with anatlsge in the other molecule. Suppose
r potential sites out ofiw possible ones and sites out ofmw ones are selected. In that case,
(1) takesO(n®r + mPs) time andO(r? + %) space. Step (I1l) take®(r?a(r?,r) + s’a(s%,s)) time
wherea is the classical functional inverse of the Ackermann fumt{i7]. The functiona grows
extremely slowly, so that for all practical purposes it maycbnsidered a constant. Step (IV) takes
O(nmw?*) time andO(nmw?) space. In this paper, we implement an exhaustive searchv/jor (
Therefore, its running time is current(r*s*) wherek is the maximum number of simultaneous
binding sites. Therefore, the algorithm takeg®r + ms+ nmw? 4 r<sf) time andO(r? 4 s> +
nmw?) space. Note that < nw ands < mw, so that the algorithm ha®(n*w + nfw + nPmPw?)
time andO(n?w? 4 mPw?) space complexity without heuristic filtering, considermgximum two
simultaneous binding sites. We are working on (V) and hopatteer find an efficient algorithm
for it or prove its hardness.

Interaction Structure Prediction Once the binding sites are predicted, a constrained minimum
free energy structure prediction algorithm predicts trmedary structure of each RNA. For each
binding site pair, a windowed version of our algorithm in f&mpletes the interaction structure
prediction.
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4 Reaults

To evaluate the performance loif RNA, we used the program to predict the binding site(s) of 20
bacterial SRNA-mRNA interactions studied in the literat@iace all these SRNAs bind their target
in close proximity to the ribosome binding site at the Shidedgarno (SD) sequence, we restricted
the program to a window of maximum 250 bases around the stdarcof the gene. We compared
our results with those obtained BjAup on the same sequences with the same windowgiz0.
The results are summarized in TableRNAup andbi RNA have generally very close performance
for the cases with one binding site. HoweuerRNA outperform®RNAup in some single binding site
cases such as GecvB-gltl. That is becabiseNA uses the interaction partition function as opposed
to the hybridization partition function used IB{Aup. The interaction partition function is more
accurate than the hybridization partition function as titeriaction partition function accounts for
both intermolecular and intramolecular base pairing [950Abi RNA significantly outperforms
RNAup for OxyS-fhlA and CopA-CopT which constitute more than onedimng site. We noticed
that our predicted energies are generally lower than thosgigied byRNAup which may be due

to different energy parameters. We used piURNA energy parameters [9] which in turn are based
onUNAFol d v3. 6 parameters [24].

We implementedi RNA in C++ and used OpenMP to parallelize it on Shared-Memory mul-
tiProcessor/core (SMP) platforms. Our experiments weneorua Sun Fire X4600 Server with 8
dual AMD Opteron CPUs and 64GB of RAM. The sequences were 71nRkfhg (see the sup-
plementary materials for sequences) and the running tinte RN¥A with full features was from
about 10 minutes to slightly more than one hour per sSRNA-mRNA phe bi RNA software will
be available and also as a webservértatp: / / conpbi 0. cs. sfu. ca/ taverna/.

5 Conclusionsand Future Work

In this paper, we present®dRNA, a new thermodynamic framework for prediction of bindingsi
between two RNAs based on minimization of binding free eneBgyilar toRNAup approach, we
assume the binding free energy is the sum of the energy needexgbair all the binding sites and
the interaction free energy released as a result of binding.

Our algorithm is able to predict multiple binding sites whis an important advantage over
previous approaches. More importantly, our algorithm camdhe crossing interactions as well as
zigzags (hairpins interacting in a zigzag fashion, see gJassess the performanceboRNA, we
compared its predictions with those RfAup for 20 bacterial SRNA-mRNA pairs studied in the
literature. The results were presented in Table 1. As it wps@edbi RNA outperform$RNAup for
those RNA pairs that have multiple binding sites such as Ctk{/Sand CopA-CopT. Moreover,
bi RNA performs slightly better thaRNAup for those pairs that have only one binding site because
bi RNA accounts for intramolecular as well as intermolecular Ipaseng in the binding sites.

To deal with simultaneous accessibility of binding sitas; algorithm models their joint prob-
ability of being unpaired. Since computing the exact joirglability distribution is intractable,
we approximate the joint probability by a polynomially repentable graphical model namely a
tree-structured Markov Random Field. Chow-Liu algorithmaadintly builds such tree model [10].
Computing a joint probability in the Chow-Liu tree is perfordniey efficient marginalization al-
gorithms [31]. Eventually, two Chow-Liu trees, pertainimgthe two input RNAs, are matched to
find the minimum binding free energy matching. To the bestwflmowledge, the complexity of



Pair Binding Site(s) bi RNA RNAup Ref.
Literature Site(s) —AG Site(s) —-AG
GevB| gt [66,77] | [44,31] | (64,81) | (44,26) [11.5| (75,93) | (38,19) [18.7 |[38]
GevB| argT | [75,91] | [104,89]| (71,90) | (108,90)(13.1| (72,91) | (107,89)|20.2 |[38]
GevB| dppA | [65,90] |[150,133] (62,81) |(153,135)14.7 | (62,81) |(153,135)23.5 |[38]
GevB|  livd [63,87] | [82,59] | (66,84) | (73,54) [13.1| (71,90) | (67,49) |14.9[38]
GevB|  livK [68,77] |[177,165] (67,86) |(175,156)12.2 | (67,86) [(175,157)19.0|[38]
GevB| oppA | [65,90] |[179,155] (67,86) |(176,158) 9.3 | (67,86) |(176,158)15.3 |[38]
GcevB |STM4351 [70,79] | [52,44] | (69,77) | (52,44)| 9.6 | (69,87) | (52,33) |17.7 |[38]
MicA | lamB [8,36] |[148,122] (8,26) |(148,131) 6.1 | (8,27) |(148,129)12.9 | [5]
MicA | ompA | [8,24] |[128,113] (8,24) [(128,113)14.0| (8,24) |(128,113)19.4 |[33]
DsrA| rpoS [8,36] | [38,10] | (21,40) | (25,7) | 9.4| (13,32) | (33,14) |16.3|[35]
RprA | rpoS | [33,62] | [39,16] | (40,51) | (32,22) | 4.3| (33,51) | (39,22) [10.7 |[23]
IstR tisA [65,87] | [79,57] | (66,85) | (78,59)|18.1| (66,85) | (78,59) |29.0 |[42]
MicC | ompC | [1,30] |[139,93]| (1,16) |(119,104)18.5| (1,16) [(119,104)18.7|[8]
MicF | ompF | [1,33] |[125,100] (14,30) | (118,99)| 8.0| (17,33) |(116,100)14.7 |[37]
RyhB| sdhD | [9,50] |[128,89]| (22,41) | (116,98)[15.8| (22,41) | (116,98)|21.5 |[25]
RyhB| sodB | [38,46] | [60,52] | (38,46) | (64,48) | 9.7 | (38,57) | (60,45)|10.3|[15]
SgrS| ptsG |[157,187] [107,76]((174,187) (89,76) |14.5|(168,187) (95,76) [22.9 |[19]
Spot42 galK [1,61] [[126,52]| (1,8) |(128,119)20.5| (27,46) | (84,68) |14.6 |[28]
(25,37) | (86,73)
(46,60) | (64,53)

OxyS| fhIA | [22,30] | [95,87] | (23,30) | (94,87)| 7.9] - - [10.3][3]
[98,104]| [45,39] | (96,104)| (48,39) (96,104)| (48,39)

CopA| CopT | [22,33] | [70,59] | (22,31) | (70,61) [25.9] - - [23.9][20]
[48,56] | [44,36] | (49,57) | (43,35) (49,67) | (43,24)

[62,67] | [29,24] | (58,67) | (33,24) - -
Table 1. Binding sites reported in the literature and predictedibgNA andRNAup with window sizew = 20.AG is in kcal/m. Two
RNAs interact in opposite direction, hence, sites in the second RNA asengsal in reverse order. See the supplementary materials
for sequences.

minimum weight Chow-Liu trees matching problem is currenitiknown. We are working on the
problem, and we hope to either prove its hardness or giveympuolial algorithm. In this paper,
we implemented an exhaustive search on the set of all caliecof single, pair, and triple sites.

Our proposed Bayesian approximation of the Boltzmann joioibability distribution provides
a novel powerful framework which can also be utilized in indual and joint RNA secondary
structure prediction algorithms. As graphical modelsvalflor models with increasing complexity,
our proposed Bayesian framework may inspire more accuratedmtable RNA-RNA interaction
prediction algorithms in future work.
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