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Abstract. We presentbiRNA, a novel algorithm for prediction of binding sites between two RNAs based on min-
imization of binding free energy. Similar toRNAup approach [29], we assume the binding free energy is the sum
of accessibility and the interaction free energies. Our algorithm maintains tractability and speed and also has two
important advantages over previous similar approaches: 1) it is able to predict multiple simultaneous binding sites
and 2) it computes a more accurate interaction free energy by considering both intramolecular and intermolecular
base pairing. Moreover,biRNA can handle crossing interactions as well as hairpins interacting in a zigzag fashion.
To deal with simultaneous accessibility of binding sites, our algorithm models their joint probability of being un-
paired. Since computing the exact joint probability distribution is intractable, we approximate the joint probability
by a polynomially representable graphical model namely a Chow-Liu tree-structured Markov Random Field. Exper-
imental results show thatbiRNA outperformsRNAup and also support the accuracy of our approach. Our proposed
Bayesian approximation of the Boltzmann joint probability distribution provides a powerful, novel framework that
can also be utilized in other applications.

1 Introduction

RNA had been viewed as a simple working copy of the genomic DNA,simply transporting in-
formation from the genome into the proteins, until the discovery of ribozymes and the realization
that the ribosome is in fact an RNA machine. Following the recent discovery of RNA interference
(RNAi), the post transcriptional silencing of gene expression via interactions between mRNAs and
their regulatory RNAs, RNA has moved from a side topic to a central research topic.

More recent studies have shown that a large fraction of the genome gives rise to RNA transcripts
that do not code for proteins [39]. Several of these non-coding RNAs (ncRNAs) regulate gene
expression post-transcriptionally through base pairing (and establishing a joint structure) with a
target mRNA, as per the eukaryotic miRNAs and small interfering RNAs (siRNAs), antisense
RNAs or bacterial small regulatory RNAs (sRNAs) [16]. In addition to such endogenous regulatory
ncRNAs, antisense oligonucleotides have been used as exogenous inhibitors of gene expression;
antisense technology is now commonly used as a research toolas well as for therapeutic purposes.
Furthermore, synthetic nucleic acids systems have been engineered to self assemble into complex
structures performing various dynamic mechanical motions[45].

A key tool for all the above advances is a fast, highly accurate computational method for pre-
dicting RNA-RNA interactions. Comprehensive methods for analyzing binding thermodynamics
of nucleic acids are computationally expensive and prohibitively slow for real applications [1, 9].
Other existing methods suffer from a low specificity, possibly because several of these methods
consider restricted versions of the problem (e.g. simplified energy functions or restricted types of
interactions) - this is mostly for computational reasons.

In this paper we present an algorithm to predict the binding sites of two interacting RNA
strands. Our most important goal in this work is tractability as well as high specificity. While
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our algorithm considers the most general type of interactions, it is still practically tractable by
making simplifying assumptions on the energy function. These assumptions are however natural
and adopted by many other groups as well [1, 6, 22, 29, 40]. Ourexperiments also support these
assumptions.

Our contribution

We give an algorithm to predict the binding sites of two interacting RNAs and also the interaction
secondary structure constrained by the predicted binding sites. As opposed to previous approaches
that are able to predict only one binding site [6, 29, 41], ouralgorithm predicts multiple simulta-
neous binding sites. We define a binding site to be a subsequence which interacts with exactly one
binding site in the other strand. Crossing interactions (external pseudoknots) and zigzags (see [1]
for exact definition) are particularly allowed. To the best of our knowledge, this allows for the most
general type of interactions considered in the literature.Although intramolecular pseudoknots are
not considered in the current work, they can be incorporatedinto our framework at the expense of
additional computational complexity.

FollowingRNAup approach [29], we assume the total interaction free energy is the sum of two
terms: 1) the free energy needed to make binding sites accessible in each molecule, and 2) the
free energy released as a result of intermolecular bonds formed between the interacting binding
site pairs. Based on that energy model, our algorithm is essentially composed of three consecutive
steps: 1) building a tree-structured Markov Random Field (MRF) to approximate accessibility of
a collection of potential binding sites, 2) computing pairwise interaction free energies between
potential binding sites of one strand against those of the other strand, and 3) finding a minimum
free energy matching of binding sites. UnlikeRNAup that computes only the hybridization partition
function for step 2, our algorithm computes the full interaction partition function [9]. Therefore,
our algorithm not only considers multiple binding sites butalso computes a more accurate free
energy of binding.

The time complexity of the first two steps isO(n3r + m3s + nmw4) in which n andm denote
the lengths of sequences,w denotes maximum binding site length, andr ≤ nw and s ≤ mw are
the number of potential sites heuristically selected out ofthe O(nw) andO(mw) possible ones.
More importantly, the space complexity of the first two stepsis O(r2 + s2 + nmw2). The third
step requires a nontrivial optimization namely minimum energy bipartite matching of two tree-
structured Markov Random Fields, a topic on which we are currently working. In this paper, we
implement an exhaustive search for the third step. Therefore, the running time of the third step
is currentlyO(rκsκ) whereκ is the maximum number of simultaneous binding sites. Sincer and
s are small in our experiments, an exhaustive search over single, pair, and triple sites is feasible.
However, we are working on the matching problem and hope to either find an efficient algorithm
for it or prove its hardness.

Related work

Since the initial works of Nussinov et al. [30] and Waterman and Smith [44] several computational
methods have emerged to study the secondary structure thermodynamics of a single nucleic acid
molecule. Those initial works laid the foundation of moderncomputational methods by adopting
a divide and conquer strategy. That view, which originally exhibited itself in the form of a simple
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base pair counting energy function, has evolved into Nearest Neighbor Thermodynamic model
which has become the standard energy model for a nucleic acidsecondary structure [26]. The
standard energy model is based on the assumption that stacking base pairs and loop entropies
contribute additively to the free energy of a nucleic acid secondary structure. Based on additivity
of the energy, efficient dynamic programming algorithms forpredicting the minimum free energy
secondary structure [30, 36, 44, 46] and computing the partition function of a single strand [14, 27]
have been developed.

Some previous attempts to analyze the thermodynamics of multiple interacting nucleic acids
concatenate input sequences in some order and consider themas a single strand. For example,
pairfold [2] andRNAcofold from Vienna package [4] concatenate the two input sequencesinto
a single strand and predict its minimum free energy structure. Dirks et al. present a method, as a
part ofNUPack, that concatenates the input sequences in some order, carefully considering sym-
metry and sequence multiplicities, and computes the partition function for the whole ensemble of
complex species [13]. However, concatenating the sequences is not accurate at all as even if pseu-
doknots are considered, some useful interactions are excluded while many physically impossible
interactions are included. Several other methods, such asRNAhybrid [34], UNAFold [12, 24], and
RNAduplex from Vienna package [4], avoid intramolecular base-pairing in either strand and com-
pute minimum free energy hybridization secondary structure. Those approaches naturally work
only for simple cases involving typically very short strands.

Alternatively, a number of studies aimed to take a more fundamental stance and compute the
minimum free energy structure of two interacting strands under energy models with growing com-
plexity. For instance, Pervouchine devised a dynamic programming algorithm to maximize the
number of base pairs among interacting strands [32]. A followup work by Kato et al. proposed a
grammar based approach to RNA-RNA interaction prediction [18]. More generally, Alkan et al. [1]
studied the joint secondary structure prediction problem under three different models: 1) base pair
counting, 2) stacked pair energy model, and 3) loop energy model. Alkan et al. proved that the
general RNA-RNA interaction prediction under all three energy models is an NP-hard problem.
Therefore, they suggested some natural constraints on the topology of possible joint secondary
structures which are satisfied by all examples of complex RNA-RNA interactions in the literature.
The resulting algorithms compute the minimum free energy secondary structure among all possible
joint secondary structures that do not contain (internal) pseudoknots, crossing interactions (i.e. ex-
ternal pseudoknots), andzigzags (please see [1] for the exact definition). In our previous work [9],
we gave an algorithmpiRNA to compute the partition function, base pair probabilities, and mini-
mum free energy structure over the type of interactions thatAlkan et al. considered. We extended
the standard energy model for a single RNA to an energy model for the joint secondary structure of
interacting strands by considering new types of (joint) structural components. AlthoughpiRNA out-
performs existing alternatives, it hasO(n6) time andO(n4) space complexity which is prohibitive
for many practical, particularly high-throughput, applications.

A third set of methods predict the secondary structure of each individual RNA independently,
and predict the (most likely) hybridization between accessible regions of the two molecules. More
sophisticated ones in this set view interaction as a multi step process [6, 29, 43]: 1) unfolding of
the two molecules to expose bases needed for hybridization,2) the hybridization at the binding
site, and 3) restructuring of the complex to a new minimum free energy conformation. Some ap-
proaches in this set, such asIntaRNA [6] and RNAup [29], assume that binding happens at one
location. Therefore, they are able to predict only one binding site, which is not the case for some
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known interacting RNAs such as OxyS-fhlA and CopA-CopT [3, 20, 21]. In this paper, we consider
multiple binding sites.

2 Preliminaries

Our algorithm is based on the assumption that binding is practically a stepwise process, a view that
has been proposed by others as well [1, 6, 22, 29, 40]. In real world, each nucleic acid molecule
has a secondary structure before taking part in any interaction. To form an interaction, as the first
step the individual secondary structures are deformed so that the binding sites in both molecules
become unpaired. As the second step, pairwise matching between the binding sites takes place.
Each step is associated with an energy the sum of which gives the free energy of binding∆G.
Specifically, denote the energy difference that is needed for unpairingall the binding sites in R and
S by EDR

u andEDS
u respectively, and denote by∆GRS

b the free energy that is released as a result of
binding. Similar to [29],

∆G = EDR
u +EDS

u +∆GRS
b . (1)

This assumption is intuitively plausible because each molecule needs to reveal its interacting
parts before the actual binding happens; moreover, these two steps are assumed to be independent
from one another. Note that previous approaches such asIntaRNA [6], RNAup [29], andRNAplex
[41] consider only one binding site in each molecule, which makes the problem easier, whereas we
consider multiple binding sites. It is sometimes argued that nature does not usually favor too highly
entangled structures [29]. Our algorithm easily accommodates an upper bound on the number of
potential binding sites, which is another advantage of our approach.

To reduce the complexity, we assume that the length of a potential binding site is not more than
a window sizew in this work. This is a reasonable assumption, which has alsobeen made in similar
approaches [29], as most known RNA-RNA interactions such as OxyS-fhlA and CopA-CopT do
not exhibit lengthy binding sites [3, 20, 21]. We call a subsequence of length not more thanw a
site.

3 Algorithm

Based on the assumption above, our programbiRNA finds a combination of binding sites that
minimizes∆G. LetV R andV S denote the set of potential binding sites, which in our case is the
collection of subsequences of length not more thanw, of R andS respectively.biRNA is composed
of five consecutive steps:

(I) For every siteW = [i, j] in V R or V S, compute the probabilityPR
u (W ) or PS

u (W ) that W is
unpaired.

(II) For every pairW1 andW2, compute the joint probabilitiesPR
u (W1,W2) andPS

u (W1,W2) that sites
W1 andW2 are simultaneously unpaired.

(III) Build tree-structured Markov Random Fields (MRF)T R = (V R
,ER) and T S = (V S

,ES)
to approximate the joint probability distribution of multiple unpaired sites. Denote theT -
approximated joint probability of unpaired sitesW1,W2, . . . ,Wk by P∗

u (W1,W2, . . . ,Wk).
(IV) ComputeQI

W RW S , the interaction partition function restricted to subsequencesW R andW S, for
everyW R ∈ V R andW S ∈ V S.
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(V) Find a non-overlapping matchingM = {(W R
1 ,W S

1 ),(W R
2 ,W S

2 ), . . . ,(W R
k ,W S

k )} that minimizes
∆G(M) = EDR

u (M)+EDS
u(M)+∆GRS

b (M), in which

EDR
u (M) = −RT logPR∗

u (W R
1 ,W R

2 , . . . ,W R
k ) (2)

EDS
u(M) = −RT logPS∗

u (W S
1 ,W S

2 , . . . ,W S
k ) (3)

∆GRS
b (M) = −RT ∑

1≤i≤k

log(QI
W R

i W S
i
−QW R

i
QW S

i
). (4)

Above,R is the universal gas constant andT is temperature. To demonstrate (2) and (3), let for
instancePR

u (W R
1 ,W R

2 , . . . ,W R
k ) be the exact probability that the sites are unpaired. In thatcase,

EDR
u (W R

1 ,W R
2 , . . . ,W R

k ) = ∆GR(W R
1 ,W R

2 , . . . ,W R
k )−∆GR, and

∆GR(W R
1 ,W R

2 , . . . ,W R
k )−∆GR = −RT logQR(W R

1 ,W R
2 , . . . ,W R

k )+RT logQR

= −RT log
QR(W R

1 ,W R
2 , . . . ,W R

k )

QR
= −RT logPR

u (W R
1 ,W R

2 , . . . ,W R
k ),

(5)

in whichQR is the partition function ofR andQR(W R
1 ,W R

2 , . . . ,W R
k ) is the partition function of the

structures in whichW R
1 ,W R

2 , . . . ,W R
k are unpaired.

In the following, we describe each step in more details. In Section 3.1 we explain (I) and (II)
above. Section 3.2 is dedicated to (III) and also inference in tree-structured Markov Random Fields
namely computingP∗

u . In Section 3.3 we describe (IV). Finally, (V) is presented in Section 3.4.

3.1 Accessibility of Site Pairs

As part ofRNAup, Mückstein et al. present an efficient algorithm for computingthe probability
of an unpaired subsequence [29]. Their algorithm computes the probability of being unpaired for
all subsequences inO(n3) time in whichn is the sequence length. Based onRNAup algorithm, we
present anO(n4w) time andO(n2) space complexity algorithm to compute the joint probabili-
ties of all unpaired site pairs. For every site, our algorithm uses constrained McCaskill’s [27] and
constrainedRNAup algorithm to compute the conditional probabilities of all other unpaired subse-
quences. There areO(nw) sites for each of which the algorithm takesO(n3) time. For triple joint
probabilities, the same method is applicable but the running time will be multiplied by another
factor of O(nw). Therefore, we only compute pairwise probabilities and approximate the whole
joint probability distribution by graphical models.

3.2 Simultaneous Accessibility of Multiple Sites

To deal with simultaneous accessibility of binding sites, we must model their joint probability of
being unpaired. One way is to compute the exact joint probability distribution by using constrained
McCaskill’s algorithm [22]. For every collection of sites, the algorithm has polynomial time com-
plexity, however, since there is an exponential number of different collections, this naı̈ve approach
is intractable. In this paper, we approximate the joint probability by a polynomially representable
graphical model namely a Markov Random Field. Graphical models, including Bayesian Networks
and Markov Random Fields, are powerful tools for approximating joint probabilities. They gen-
erally have enough expressive power which intuitively explains why the inference problem for
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general graphical models is NP-hard [11]. Fortunately, there is an efficient inference algorithm for
tree-structured models [31]. In this work, we build a Chow-Liu tree, which is a tree-structured
Markov Random Field, to approximate the exact joint probability distribution [10].

To describe the Chow-Liu algorithm, letG be the complete weighted graph onV , the set of
potential binding sites, in which the weight of an edge betweenW1 andW2 is I(W1,W2), the mutual
information given by

I(W1,W2) = ∑
x1∈{W1,∼W1}
x2∈{W2,∼W2}

P(x1,x2) log

(

P(x1,x2)

P(x1)P(x2)

)

. (6)

Above,P(W1,∼W2) is for instance the joint probability thatW1 is unpaired andW2 is not unpaired.
In Section 3.1, we explained how to compute the joint probabilities of all site pairs. The following
equations use Bayes rule to calculate all the necessary termsfrom P(W1,W2): P(W1,∼ W2) =
P(W1)−P(W1,W2), P(∼ W1,W2) = P(W2)−P(W1,W2), P(∼ W1,∼ W2) = 1−P(W1)−P(W2)+
P(W1,W2). The Chow-Liu treeT is the best tree-structured approximation for a joint probability
distribution, in the sense thatT has the maximum mutual information with the joint probability
distribution [10]. Chow and Liu proved thatT is the maximum spanning tree ofG . To compute
T , we use a standard maximum spanning tree algorithm such as Chazelle’s algorithm [7]. We
refer the reader to [17] or [31] for a detailed description ofinference algorithm inT . In summary,
P∗

u (W1,W2, . . . ,Wk) is computed by marginalizing overV \{W1,W2, . . . ,Wk} the joint probability
distribution defined byT . There exists an efficient algorithm for inference which runs in O(|V |)
time [17].

3.3 Free Energy of Interaction

The local free energy of interaction for a pair of sitesW R andW S is−RT log(QI
W RW S −QW RQW S) in

whichQI is the interaction partition function restricted toW R andW S [9] andQ is McCaskill’s par-
tition function restricted toW . Note that a simple version ofQI would calculate only the hybridiza-
tion partition function betweenW R andW S (see [29]); however, this would exclude any intramolec-
ular structure in the binding sites. For that reason, we use our approach forQI which considers in-
termolecular as well as intramolecular structures. Our modified algorithm is the dynamic program-
ming in [9] that starts withlR = 1, lS = 1 and incrementally computes all the recursive quantities up
to lR = w, lS = w. Therefore, the windowed version of our interaction partition function algorithm
hasO(nmw4) time andO(nmw2) space complexity, in whichn andm are the lengths ofR andS re-
spectively. Finally, for a non-overlapping matchingM = {(W R

1 ,W S
1 ),(W R

2 ,W S
2 ), . . . ,(W R

k ,W S
k )} the

free energy of interaction is∆GRS
b (M) = −RT ∑1≤i≤k log(QI

W R
i W S

i
−QW R

i
QW S

i
), whereQI

W R
i W S

i
−

QW R
i

QW S
i

is the partition function for those structures that constitute at least one intermolecular
bond. Note that is based on the simplifying assumption in Section 3. A fundamental way to com-
pute the free energy of interaction for a matching of bindingsites is through the interaction partition
function and the probabilities ofQI tables. However, that approach is intractable for long RNA se-
quences mainly due toO(n2m2) space requirement. In this paper, we replace the true free energy
of interaction with local one, which is shown to be a reasonable approximation in practice (see the
results in Section 4).
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3.4 Binding Sites Matching

Having built the machinery to compute∆G for a matching of binding sites, we would like to
find a matching that minimizes∆G. To clarify the importance and difficulty of the problem, sup-
pose the binding sites were independent so thatPu(W1,W2, . . . ,Wk) = Pu(W1)Pu(W2) · · ·Pu(Wk).
In that case, the problem would reduce to finding a minimum weight bipartite matching with
weight(W R

i ,W S
j ) = −RT log[PR

u (W R
i )PS

u (W S
j )(QI

W R
i W S

j
−QW R

i
QW S

j
)]. There are efficient algorithms

for minimum weight bipartite matching, but the issue is thatthe independence assumption is too
crude of an approximation. Therefore, we propose the following problem, which has not been
solved to our knowledge:

Minimum Weight Chow-Liu Trees Matching Problem

Given a pair of Chow-Liu treesT R = (V R
,ER) andT S = (V S

,ES), compute a non-perfect match-
ing M between the nodes ofT R andT S that minimizes∆G(M).
Input: Chow-Liu treesT R andT S.
Output: A matchingM = {(W R

1 ,W S
1 ),(W R

2 ,W S
2 ), . . . ,(W R

k ,W S
k )} ⊂ V R ×V S.

The complexity of minimum weight Chow-Liu trees matching problem is currently unknown.
We are working on the problem, and we hope to either prove its hardness or give a polynomial
algorithm; we incline toward the latter though. In this paper, we implemented an exhaustive search
on the set of all collections of single, pair, and triple sites.

3.5 Complexity Analysis

Let n denote the length ofR, m denote the length ofS, andw denote the window length. Step
(I) of the algorithm takesO(n3 + m3) time andO(n2 + m2) space. If we consider all site pairs,
then (II) takesO(n4w + m4w) time andO(n2w2 + m2w2) space to store the joint probabilities. It
is often reasonable to filter potential binding sites, for example based on the probability of being
unpaired or the interaction partition function with another site in the other molecule. Suppose
r potential sites out ofnw possible ones ands sites out ofmw ones are selected. In that case,
(II) takesO(n3r +m3s) time andO(r2 + s2) space. Step (III) takesO(r2α(r2

,r)+ s2α(s2
,s)) time

whereα is the classical functional inverse of the Ackermann function [7]. The functionα grows
extremely slowly, so that for all practical purposes it may be considered a constant. Step (IV) takes
O(nmw4) time andO(nmw2) space. In this paper, we implement an exhaustive search for (V).
Therefore, its running time is currentlyO(rκsκ) whereκ is the maximum number of simultaneous
binding sites. Therefore, the algorithm takesO(n3r + m3s + nmw4 + rκsκ) time andO(r2 + s2 +
nmw2) space. Note thatr ≤ nw ands ≤ mw, so that the algorithm hasO(n4w + m4w + n2m2w4)
time andO(n2w2+m2w2) space complexity without heuristic filtering, consideringmaximum two
simultaneous binding sites. We are working on (V) and hope toeither find an efficient algorithm
for it or prove its hardness.

Interaction Structure Prediction Once the binding sites are predicted, a constrained minimum
free energy structure prediction algorithm predicts the secondary structure of each RNA. For each
binding site pair, a windowed version of our algorithm in [9]completes the interaction structure
prediction.
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4 Results

To evaluate the performance ofbiRNA, we used the program to predict the binding site(s) of 20
bacterial sRNA-mRNA interactions studied in the literature.Since all these sRNAs bind their target
in close proximity to the ribosome binding site at the Shine-Dalgarno (SD) sequence, we restricted
the program to a window of maximum 250 bases around the start codon of the gene. We compared
our results with those obtained byRNAup on the same sequences with the same window sizew = 20.
The results are summarized in Table 1.RNAup andbiRNA have generally very close performance
for the cases with one binding site. However,biRNA outperformsRNAup in some single binding site
cases such as GcvB-gltI. That is becausebiRNA uses the interaction partition function as opposed
to the hybridization partition function used byRNAup. The interaction partition function is more
accurate than the hybridization partition function as the interaction partition function accounts for
both intermolecular and intramolecular base pairing [9]. Also, biRNA significantly outperforms
RNAup for OxyS-fhlA and CopA-CopT which constitute more than one binding site. We noticed
that our predicted energies are generally lower than those predicted byRNAup which may be due
to different energy parameters. We used ourpiRNA energy parameters [9] which in turn are based
onUNAFold v3.6 parameters [24].

We implementedbiRNA in C++ and used OpenMP to parallelize it on Shared-Memory mul-
tiProcessor/core (SMP) platforms. Our experiments were run on a Sun Fire X4600 Server with 8
dual AMD Opteron CPUs and 64GB of RAM. The sequences were 71-253nt long (see the sup-
plementary materials for sequences) and the running time ofbiRNA with full features was from
about 10 minutes to slightly more than one hour per sRNA-mRNA pair. ThebiRNA software will
be available and also as a webserver athttp://compbio.cs.sfu.ca/taverna/.

5 Conclusions and Future Work

In this paper, we presentedbiRNA, a new thermodynamic framework for prediction of binding sites
between two RNAs based on minimization of binding free energy. Similar toRNAup approach, we
assume the binding free energy is the sum of the energy neededto unpair all the binding sites and
the interaction free energy released as a result of binding.

Our algorithm is able to predict multiple binding sites which is an important advantage over
previous approaches. More importantly, our algorithm can handle crossing interactions as well as
zigzags (hairpins interacting in a zigzag fashion, see [1]). To assess the performance ofbiRNA, we
compared its predictions with those ofRNAup for 20 bacterial sRNA-mRNA pairs studied in the
literature. The results were presented in Table 1. As it was expected,biRNA outperformsRNAup for
those RNA pairs that have multiple binding sites such as OxyS-fhlA and CopA-CopT. Moreover,
biRNA performs slightly better thanRNAup for those pairs that have only one binding site because
biRNA accounts for intramolecular as well as intermolecular basepairing in the binding sites.

To deal with simultaneous accessibility of binding sites, our algorithm models their joint prob-
ability of being unpaired. Since computing the exact joint probability distribution is intractable,
we approximate the joint probability by a polynomially representable graphical model namely a
tree-structured Markov Random Field. Chow-Liu algorithm efficiently builds such tree model [10].
Computing a joint probability in the Chow-Liu tree is performed by efficient marginalization al-
gorithms [31]. Eventually, two Chow-Liu trees, pertaining to the two input RNAs, are matched to
find the minimum binding free energy matching. To the best of our knowledge, the complexity of
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Pair Binding Site(s) biRNA RNAup Ref.
Literature Site(s) −∆G Site(s) −∆G

GcvB gltI [66,77] [44,31] (64,81) (44,26) 11.5 (75,93) (38,19) 18.7 [38]
GcvB argT [75,91] [104,89] (71,90) (108,90) 13.1 (72,91) (107,89) 20.2 [38]
GcvB dppA [65,90] [150,133] (62,81) (153,135)14.7 (62,81) (153,135)23.5 [38]
GcvB livJ [63,87] [82,59] (66,84) (73,54) 13.1 (71,90) (67,49) 14.9 [38]
GcvB livK [68,77] [177,165] (67,86) (175,156)12.2 (67,86) (175,157)19.0 [38]
GcvB oppA [65,90] [179,155] (67,86) (176,158) 9.3 (67,86) (176,158)15.3 [38]
GcvB STM4351 [70,79] [52,44] (69,77) (52,44) 9.6 (69,87) (52,33) 17.7 [38]
MicA lamB [8,36] [148,122] (8,26) (148,131) 6.1 (8,27) (148,129)12.9 [5]
MicA ompA [8,24] [128,113] (8,24) (128,113)14.0 (8,24) (128,113)19.4 [33]
DsrA rpoS [8,36] [38,10] (21,40) (25,7) 9.4 (13,32) (33,14) 16.3 [35]
RprA rpoS [33,62] [39,16] (40,51) (32,22) 4.3 (33,51) (39,22) 10.7 [23]
IstR tisA [65,87] [79,57] (66,85) (78,59) 18.1 (66,85) (78,59) 29.0 [42]

MicC ompC [1,30] [139,93] (1,16) (119,104)18.5 (1,16) (119,104)18.7 [8]
MicF ompF [1,33] [125,100] (14,30) (118,99) 8.0 (17,33) (116,100)14.7 [37]
RyhB sdhD [9,50] [128,89] (22,41) (116,98) 15.8 (22,41) (116,98) 21.5 [25]
RyhB sodB [38,46] [60,52] (38,46) (64,48) 9.7 (38,57) (60,45) 10.3 [15]
SgrS ptsG [157,187] [107,76] (174,187) (89,76) 14.5 (168,187) (95,76) 22.9 [19]

Spot42 galK [1,61] [126,52] (1,8) (128,119)20.5 (27,46) (84,68) 14.6 [28]
(25,37) (86,73)
(46,60) (64,53)

OxyS fhlA [22,30] [95,87] (23,30) (94,87) 7.9 - - 10.3 [3]
[98,104] [45,39] (96,104) (48,39) (96,104) (48,39)

CopA CopT [22,33] [70,59] (22,31) (70,61) 25.9 - - 23.9 [20]
[48,56] [44,36] (49,57) (43,35) (49,67) (43,24)
[62,67] [29,24] (58,67) (33,24) - -

Table 1. Binding sites reported in the literature and predicted bybiRNA andRNAup with window sizew = 20.∆G is in kcal/m. Two
RNAs interact in opposite direction, hence, sites in the second RNA are presented in reverse order. See the supplementary materials
for sequences.

minimum weight Chow-Liu trees matching problem is currentlyunknown. We are working on the
problem, and we hope to either prove its hardness or give a polynomial algorithm. In this paper,
we implemented an exhaustive search on the set of all collections of single, pair, and triple sites.

Our proposed Bayesian approximation of the Boltzmann joint probability distribution provides
a novel powerful framework which can also be utilized in individual and joint RNA secondary
structure prediction algorithms. As graphical models allow for models with increasing complexity,
our proposed Bayesian framework may inspire more accurate but tractable RNA-RNA interaction
prediction algorithms in future work.
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