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Abstract— This paper characterizes shortest paths for
differential-drive mobile robots by classifying solutions in the
spirit of Dubins curves and Reeds-Shepp curves for car-like
robots. Not only are optimal paths for mobile robots interesting
with respect to the optimized criteria, but also they offer
a family of motion primitives that can be used for motion
planning in the presence of obstacles. A well-defined notion
of shortest is obtained by optimizing the total amount of wheel
rotation. This paper extends our previous characterization of
the minimum wheel-rotation trajectories that are maximal with
respect to sub-path partial order in [2]. To determine the
shortest path for every pair of initial and goal configurations,
we need to characterize all of the minimum wheel-rotation
trajectories regardless of whether they are maximal with respect
to sub-path partial order. In this paper we give all 52 minimum
wheel-rotation trajectories. We also give the end-point map in
terms of the path parameters for every shortest path. Thus,
finding the shortest path for every pair of initial and goal
configurations reduces to solving systems of equations for the
path parameters. As in [2], the Pontryagin Maximum Principle
as a necessary condition eliminates some non-optimal paths.
The paths that satisfy the Pontryagin Maximum Principle
(called extremals) are presented in this paper by finite state
machines. Level sets of the cost-to-go function for a number of
robot orientations are finally presented.

I. INTRODUCTION

This paper presents the complete family of all 52 mini-
mum wheel-rotation trajectories for differential-drive mobile
robots in the plane without obstacles. By wheel-rotation we
mean the distance travelled by the robot wheels, which is
independent of the robot maximum speed. Thus, minimizing
wheel-rotation is a natural variation of the shortest path
problem by Dubins [4] and Reeds and Shepp [6], in which
the distance travelled by the car is minimized. In this
regard, this work has been basically motivated by Dubins
and Reeds-Shepp shortest paths for car-like vehicles. In fact,
we show that some Reeds-Shepp curves appear in the set
of minimum wheel-rotation trajectories, whereas there are
minimum wheel-rotation trajectories that are different from
Reeds-Shepp curves.

The first work on shortest paths for car-like vehicles is
done by Dubins [4]. He gives a characterization of time-
optimal trajectories for a car with a bounded turn radius. In
that problem, the car always moves forward with constant
speed. He uses a purely geometrical method to characterize
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such shortest paths. Later, Reeds and Shepp [6] solve a
similar problem in which the car is able to move backward as
well. They identify 48 different shortest paths. Shortly after
Reeds and Shepp, their problem is solved and also refined
by Sussmann and Tang [11] with the help of optimal control
techniques. Sussmann and Tang show that there are only 46
different shortest paths for Reeds-Shepp car. Souères and
Laumond [9] classify the shortest paths for a Reeds-Shepp
car into symmetric classes.

However, optimal trajectories for nonholonomic systems
are interesting not only because of the criterion that they
optimize, but also because they have a property that makes
them useful for motion planning in the presence of obstacles.
If we restrict the motions of the system to the set of optimal
trajectories, we still conserve some important properties of
the system such as small-time local controllability. Conse-
quently, local planners that are based on families of optimal
trajectories satisfy the topological property [7]. Hence, dif-
ferent families of optimal trajectories provide local planners
that can be helpful in different applications.

In [1], the time-optimal trajectories for the differential
drive is studied, and a complete characterization of all time-
optimal trajectories is given. Time-optimal trajectories for
the differential drive consist of rotation in place and straight
line segments. Minimum wheel-rotation trajectories are com-
posed of rotation in place, straight line, and swing segments
(one wheel stationary and the other rolling). In this paper we
extend our previous characterization of the minimum wheel-
rotation trajectories, which are maximal with respect to sub-
path partial order, to derive all 52 different minimum wheel-
rotation trajectories.

Souères and Boissonnat [8] study the time optimality of
Dubins car with angular acceleration control. They present
an incomplete characterization of time-optimal trajectories
for their system. However, full characterization of such time-
optimal trajectories seems to be difficult because Sussmann
[10] proves that there are time-optimal trajectories for that
system that require infinitely many input switchings (chat-
tering or Fuller phenomenon). Sussmann uses Zelikin and
Borisov theory of chattering control [12] to prove his result.
Chyba and Sekhavat [3] study time optimality for a mobile
robot pulling one trailer.

We first present finite state machines for extremals. We
then give an explicit characterization of all 52 minimum
wheel-rotation paths with their end-point map in terms of
the path parameters. Finally, we give level sets of the cost-
to-go function computed at a number of robot orientations.
The proofs of lemmas are omitted due to space limitations.
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Fig. 1. Differential-drive model

II. PROBLEM FORMULATION

A differential-drive robot [2] is a three-dimensional system
with its configuration variable denoted by q = (x, y, θ) ∈
C = R

2 × S
1 in which x and y are the coordinates of the

point on the axle, equidistant from the wheels, in a fixed
frame in the plane, and θ ∈ [0, 2π) is the angle between x-
axis of the frame and the robot local longitudinal axis (see
Figure 1).

The robot has independent velocity control of each wheel.
Assume that the wheels have equal bounds on their velocity.
More precisely, u1, u2 ∈ [−1, 1], in which the inputs u1 and
u2 are respectively the left and the right wheel velocities,
and the input space is U = [−1, 1] × [−1, 1] ⊂ R

2. The
system is

q̇ = f(q, u) = u1f1(q) + u2f2(q) (1)

in which f1 and f2 are vector fields in the tangent bundle
TC of configuration space. Let the distance between the robot
wheels be 2b. In that case,

f1 =
1

2





cos θ
sin θ
− 1

b



 and f2 =
1

2





cos θ
sin θ

1

b



 . (2)

The Lagrangian L and the cost functional J to be minimized
are

L(u) =
1

2
(|u1| + |u2|) (3)

J(u) =

∫ T

0

L(u(t))dt. (4)

The factor 1

2
above helps to simplify further formulas, and

does not alter the optimal trajectories.
For every pair of initial and goal configurations, we seek

an admissible control, i.e. a measurable function u : [0, T ] →
U , that minimizes J while transferring the initial configura-
tion to the goal configuration. Since the cost J is invariant
by scaling the input within U , we can assume without
loss of generality that the controls are either constantly
zero (u ≡ (0, 0)) or saturated at least in one input, i.e.
max(|u1(t)|, |u2(t)|) = 1 for all t ∈ [0, T ]. Note that
throughout this paper, all controls, u : [0, T ] → U , are
admissible.

In [2], it is shown that minimum wheel-rotation trajectories
exist. The Pontryagin Maximum Principle [5] provides a
necessary condition for optimality. Using the Pontryagin
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Fig. 2. Robot stays between two lines `1 and `2 along a tight extremal.

Maximum Principle, candidate trajectories are characterized
in [2], and eventually, geometrical methods completely de-
termine minimum wheel-rotation trajectories.

Def 1: An extremal is a trajectory q(t) that satisfies the
conditions of the Pontryagin Maximum Principle [2], [5].

III. CHARACTERIZATION OF EXTREMALS

In [2], two classes of extremals, tight and loose, are
distinguished.

A. Tight Extremals
For every tight extremal there are two parallel lines `1 and

`2 in the plane. The two lines `1 and `2 cut the plane into
five disjoint subsets (see Figure 2): S+, `1, S±, `2, and S−.
Along the extremal, both wheels of the robot must stay on
or between the two lines (see Figure 2). Furthermore, the
extremal control law is

u1 ∈







[−1, 0] if wheel 2 ∈ `1

{0} if wheel 2 ∈ S±

[0, 1] if wheel 2 ∈ `2

(5)

u2 ∈







[0, 1] if wheel 1 ∈ `1

{0} if wheel 1 ∈ S±

[−1, 0] if wheel 1 ∈ `2

. (6)

It can be seen from the above extremal control law
that tight extremals are composed of swing and straight
segments. We use L, R, and S to denote swing around
the left wheel, the right wheel, and straight line motions
respectively. We use a superscript for direction: − is
clockwise, + is counter-clockwise, + is forward, and −
is backward. Otherwise, the direction of swing is constant
throughout the trajectory. The symbol ∗ means zero or more
copies of the base expression. Depending on the distance
between `1 and `2 there are three different types of tight
extremals. For each type, we define a finite state machine
to present extremals more precisely.

Case 1: Let d(`1, `2) = 2b in which d is the distance
function. Besides swing, the robot can move straight
forward and backward by keeping the wheels on `i’s.
In this case, the extremals are composed of a sequence
of swing and straight segments. We define a finite state
machine F1 to present such extremals more precisely. Let
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Q1 = {0, (π
2
, `1), (

π
2
, `2), π, ( 3π

2
, `1), (

3π
2

, `2)} be the set
of states. States are the robot orientations together with
its position, i.e. whether it lies on the line `1 or `2. Let
the input alphabet be Σ1 = {S+,S−,L+

π

2

,L−
π

2

,R+
π

2

,R−
π

2

}.
Define F1 by the transition function that is depicted in
Figure 3. If robot starts in one of the states in Q1, it has
to move according to F1. If the initial configuration of
robot is none of the states, the robot performs a compliant
Lα or Rα motion, in which 0 ≤ α < π

2
, to reach one the

states and continues according to F1. In general, there can
be an arbitrary number of swing and straight segments.
Since the straight segments can be translated and merged
together, a representative subclass with only one straight
segment suffices for giving all such minimum wheel-rotation
trajectories.

Case 2: Let d(`1, `2) > 2b. The robot cannot move
straight because it cannot keep the wheels on `i’s over
some interval of time. Thus, such extremals are of the
form (RπLπ)∗. Note that these extremals are sub-paths
of case 1 extremals. Again, we define a finite state
machine F2 to present such extremals more precisely. Let
Q2 = {(π

2
, `1), (

π
2
, `2), (

3π
2

, `1), (
3π
2

, `2)} be the set of
states. States are the robot orientations together with its
position, i.e. whether it lies on the line `1 or `2. Let the
input alphabet be Σ2 = {L+

π ,L−
π ,R+

π ,R−
π }. Define F2 by

the transition function that is depicted in Figure 4.
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Case 3: Let d(`1, `2) < 2b. In this case, the ex-
tremals are of the form (L−

γ R
−
γ L

+
γ R

+
γ )∗ in which γ =

sin−1(d(`1, `2)/2b) < π
2

. Like the two previous cases, we
define a finite state machine F3 to present such extremals
more precisely. Let Q3 = {π

2
− γ, (π

2
, `1), (

π
2
, `2),

π
2

+
γ, 3π

2
− γ, ( 3π

2
, `1), (

3π
2

, `2),
3π
2

+ γ} be the set of states.
States are the robot orientations together with its position, i.e.
whether it lies on the line `1 or `2. Let the input alphabet
be Σ3 = {L+

γ ,L−
γ ,R+

γ ,R−
γ }. Define F3 by the transition

function that is depicted in Figure 5.
Lemma 1 ([2]): Let q(t) be a tight extremal. Wheel-

rotation of q is the length of the projection of q(t) onto
the x-y plane.



B. Loose Extremals
The PMP does not give a restrictive enough extremal con-

trol law for loose extremals [2]. In fact, the only constraint
the PMP imposes on loose extremals is that u1,−u2 ∈ [0, 1]
or u1,−u2 ∈ [−1, 0]. The following lemma shows that for
those loose extremals that happen to be minimum wheel-
rotation, there exists an equivalent trajectory (i.e. with equal
wheel-rotation) with the same boundary points which is
composed of swing and rotation in place.

Lemma 2 ([2]): Let (q(t), u(t)) ∈ P be a loose minimum
wheel-rotation trajectory-control pair that tranfers the initial
configuration qi to the goal configuration qg . There exists
a trajectory-control pair (q̌(t), ǔ(t)) ∈ P transferring qi to
qg , in which ǔ is composed of a sequence of alternating
rotation in place and swing segments in the same direction.
Furthermore, q(t) and q̌(t) have the same wheel rotation,
i.e. J(u) = J(ǔ).

We use P to denote rotation in place. In order to present
the representative subclass of loose extremals whose ex-
istence is established in Lemma 2, we define finite state
machines E1 and E2. Let 0 ≤ γ ≤ π and Q = { γ

2
, π −

γ
2
, π + γ

2
, 2π − γ

2
} be the set of states which represent

the robot orientation. Let the input alphabet be Σ =
{L+

γ ,L−
γ ,R+

γ ,R−
γ ,P+

π−γ ,P−

π−γ}. Define E1 and E2 by the
transition functions that are depicted in Figures 6 and 7
respectively. E1 provides a representative subclass of loose
extremals in + direction and E2 in − direction.

Lemma 3 ([2]): Let q(t) be a loose extremal associated
with the control u(t), and let ϑ be the length of the projection
of q(t) onto S

1. In this case wheel-rotation of q is bϑ.

IV. CHARACTERIZATION OF MAXIMAL MINIMUM
WHEEL-ROTATION TRAJECTORIES

In previous section, extremals which are candidate min-
imum wheel-rotation trajectories were studied. Using ge-
ometrical techniques, one can give a characterization of
minimum wheel-rotation trajectories for differential-drive
mobile robots. Particularly, since any sub-path of an optimal
path is necessarily optimal, we presented minimum wheel-
rotation trajectories that are maximal with respect to sub-path
partial order in [2]. In the following, we precisely define sub-
path partial order as well as symmetries of the problem, and
we summarize minimum wheel-rotation trajectories that are
maximal with repsect to sub-path partial order.

A. Sub-Path Partial Order
Let P be the set of all finite-time trajectory-control pairs

of the differential-drive. More precisely,

P = {(q, u) | q : [0, T ] → C, u : [0, T ] → U, q̇ = f(q, u)}.
(7)

In this paper, input functions are admissible, and those
that are equal almost everywhere (a.e.) are assumed to be
identical. Let (q, u) and (q′, u′) be two elements of P which
are defined respectively on [0, T ] and [0, T ′]. In order to

define sub-path relation, we give a partial order � on P . We
define (q, u) � (q′, u′) iff

T ≤ T ′ and ∃ δt ≥ 0, ∀ t ∈ [0, T ], u(t) = u′(t + δt). (8)

Define the relation ∼ on P as follows:

(q, u) ∼ (q′, u′) ⇐⇒ (q, u) � (q′, u′) and (q′, u′) � (q, u).
(9)

Since ∼ is an equivalence relation, P = P/∼ is well-defined
and is the set of all finite-time trajectory-control pairs of the
differential-drive up to plane transformations. Since � is a
partial order on P and ∼ is an equivalence relation, � is
also a well-defined partial order on P = P/∼.

B. Symmetries
Assume (q, u) ∈ P is a minimum wheel-rotation

trajectory-control pair that is defined on [0, T ]. Let q̃(t)
be the trajectory associated with control u(T − t), q̄(t)
the trajectory associated with control −u(t), and q̂(t) the
trajectory associated with control û(t) = (u2(t), u1(t)).
Define the operators O1, O2, and O3 on P by

O1 : (q(t), u(t)) 7→ (q̃(t), u(T − t)) (10)
O2 : (q(t), u(t)) 7→ (q̄(t),−u(t)) (11)
O3 : (q(t), u(t)) 7→ (q̂(t), û(t)). (12)

Due to symmetries, O1(q, u), O2(q, u), and O3(q, u) are
also minimum wheel-rotation trajectories. O1 corresponds to
reversing the trajectory in time, O2 corresponds to reversing
the inputs, and O3 corresponds to exchanging the left and
the right wheels.

C. Optimal Trajectories That Are Maximal in P

Minimum wheel-rotation trajectories are composed of a
finite number of swing, straight, and rotation in place seg-
ments [2]. Let L, R, S, P, −, and + be the same as in
Section III. Subscripts are non-negative angles or distances.
Here we summarize minimum wheel-rotation trajectories that
are maximal with respect to the partial order � which is
described in Section IV-A. Taking the symmetries in Section
IV-B into account, all of the maximal minimum wheel-
rotation trajectories, with their symmetric clones, are given
in Table I. Since the symmetry operators O1,O2, and O3

commute, we do not need to worry about their order.

V. ALL MINIMUM WHEEL-ROTATION TRAJECTORIES

In order to determine the shortest path for every pair
of initial and goal configurations, we need to characterize
all of the minimum wheel-rotation trajectories regardless of
whether they are maximal. Here we will give all of the
minimum wheel-rotation trajectories. We will also compute
their cost and goal configuration in terms of the parameters.
Thus, finding the shortest path for every pair of initial and
goal configurations reduces to solving systems of equations
for the path parameters. In the following sections, symbols
are the same as in Section III. Also C represents a swing,
L or R, and | represents a change of direction. Note that
in the following, orientation of the robot θ must always be



TABLE I
MAXIMAL MINIMUM WHEEL-ROTATION TRAJECTORIES SORTED BY

SYMMETRY CLASS

(A) (B)
Base L

−

α R
−

π

2

S+R
−

β
L
−

α R
−

π

2

S+L
+
π

2

R
+

β

O1 R
−

β
S+R

−

π

2

L
−

α R
+

β
L

+
π

2

S+R
−

π

2

L
−

α

O2 L
+
α R

+
π

2

S−R
+

β
L

+
αR

+
π

2

S−L
−

π

2

R
−

β

O3 R
+
αL

+
π

2

S
+
L

+

β
R

+
αL

+
π

2

S
+
R

−

π

2

L
−

β

O1 ◦ O2 R
+

β
S
−

R
+
π

2

L
+
α R

−

β
L
−

π

2

S
−

R
+
π

2

L
+
α

O1 ◦ O3 L
+

β
S+L

+
π

2

R
+
α L

−

β
R

−

π

2

S+L
+
π

2

R
+
α

O2 ◦ O3 R
−

α L
−

π

2

S−L
−

β
R

−

α L
−

π

2

S−R
+
π

2

L
+

β

O1 ◦ O2 ◦ O3 L
−

β
S−L

−

π

2

R
−

α L
+

β
R

+
π

2

S−L
−

π

2

R
−

α

α + β ≤ π
2

α + β ≤ 2

(C) (D)
Base L

−

α R
−

γ L
+
γ R

+

β
L

+
α R

−

γ L
−

γ R
+

β

O1 R
+

β
L

+
γ R

−

γ L
−

α R
+

β
L
−

γ R
−

γ L
+
α

O2 L
+
α R

+
γ L

−

γ R
−

β
L
−

α R
+
γ L

+
γ R

−

β

O3 R
+
α L

+
γ R

−

γ L
−

β
R

−

α L
+
γ R

+
γ L

−

β

O1 ◦ O2 R
−

β
L
−

γ R
+
γ L

+
α R

−

β
L

+
γ R

+
γ L

−

α

O1 ◦ O3 L
−

β
R

−

γ L
+
γ R

+
α L

−

β
R

+
γ L

+
γ R

−

α

O2 ◦ O3 R
−

α L
−

γ R
+
γ L

+

β
R

+
α L

−

γ R
−

γ L
+

β

O1 ◦ O2 ◦ O3 L
+

β
R

+
γ L

−

γ R
−

α L
+

β
R

−

γ L
−

γ R
+
α

α, β < γ ≤ π
2

α, β < γ ≤ π
2

(E) (F)
Base R

+
αP

+
γ L

+

β
P

+
α R

+
γ P

+

β

O1 L
+

β
P

+
γ R

+
α P

+

β
R

+
γ P

+
α

O2 R
−

α P
−

γ L
−

β
P

−

α R
−

γ P
−

β

O3 L
−

α P
−

γ R
−

β
P

−

α L
−

γ P
−

β

O1 ◦ O2 L
−

β
P

−

γ R
−

α P
−

β
R

−

γ P
−

α

O1 ◦ O3 R
−

β
P

−

γ L
−

α P
−

β
L
−

γ P
−

α

O2 ◦ O3 L
+
αP

+
γ R

+

β
P

+
α L

+
γ P

+

β

O1 ◦ O2 ◦ O3 R
+

β
P

+
γ L

+
α P

+

β
L

+
γ P

+
α

α + γ + β ≤ π α + γ + β ≤ π

considered an element of S
1. In other words, θ is evaluated

mod 2π.
Let the initial configuration of an arbitrary trajectory q(t)

be (xi, yi, θi) ∈ C, i.e. q(0) = (xi, yi, θi). Suppose (q, u) ∈
P , and it is defined on [0, T ]. Let q̂(t) be the trajectory
corresponding to the input u(t) such that q̂(0) = (0, 0, 0).
Suppose the goal configuration of q̂ is (x, y, θ), i.e. q̂(T ) =
(x, y, θ). In that case, the goal configuration of q is

xg = xi + x cos θi − y sin θi (13)
yg = yi + x sin θi + y cos θi (14)
θg = θi + θ, (15)

i.e. q(T ) = (xg , yg, θg). Thus, we may assume without loss
of generality that the initial configuration of robot is (0, 0, 0)
throughout this section.

A. CαPγCβ and PαCγPβ

In Table II, the list of minimum wheel-rotation trajectories
of type CαPγCβ and PαCγPβ can be found. The goal

TABLE II
α + γ + β ≤ π

CαPγCβ PαCγPβ κ1 κ2 κ3 c

R
+
αP

+
γ L

+

β
P

+
α R

+
γ P

+

β
α α + γ α + γ + β b

L
+
αP

+
γ R

+

β
P

+
α L

+
γ P

+

β
α α + γ α + γ + β −b

R
−

α P
−

γ L
−

β
P

−

α R
−

γ P
−

β
−α −α − γ −α − γ − β b

L
−

α P
−

γ R
−

β
P

−

α L
−

γ P
−

β
−α −α − γ −α − γ − β −b

TABLE III
α, β ≤ γ ≤ π

2

Cα|CγCβ κ1 κ2 κ3 c

R
+
α L

−

γ R
−

β
α α − γ α − γ − β b

L
+
α R

−

γ L
−

β
α α − γ α − γ − β −b

R
−

α L
+
γ R

+

β
−α −α + γ −α + γ + β b

L
−

α R
+
γ L

+

β
−α −α + γ −α + γ + β −b

CαCγ |Cβ κ1 κ2 κ3 c

R
+
α L

+
γ R

−

β
α α + γ α + γ − β b

L
+
α R

+
γ L

−

β
α α + γ α + γ − β −b

R
−

α L
−

γ R
+

β
−α −α − γ −α − γ + β b

L
−

α R
−

γ L
+

β
−α −α − γ −α − γ + β −b

configuration of CαPγCβ is

x = −c(sinκ1 + sin κ2 − sin κ3) (16)
y = c(cosκ1 − 1 + cosκ2 − cosκ3) (17)
θ = κ3, (18)

and the goal configuration of PαCγPβ is

x = c(sin κ1 − sinκ2) (19)
y = c(cosκ2 − cosκ1) (20)
θ = κ3, (21)

in which κ1, κ2, κ3, and c are the parameters in Table II.
Wheel-rotation of such trajectories is α + γ + β.

B. Cα|CγCβ and CαCγ |Cβ

In Table III, the list of minimum wheel-rotation trajectories
of type Cα|CγCβ and CαCγ |Cβ can be found. The goal
configuration of both Cα|CγCβ and CαCγ |Cβ is

x = −c(2 sinκ1 − 2 sinκ2 + sin κ3) (22)
y = c(2 cosκ1 − 1 − 2 cosκ2 + cosκ3) (23)
θ = κ3, (24)

in which κ1, κ2, κ3, and c are the parameters in Table III.
Wheel-rotation of such trajectories is α + γ + β.

C. CαCγ |CγCβ and Cα|CγCγ |Cβ

In Table IV, the list of minimum wheel-rotation trajecto-
ries of type CαCγ |CγCβ and Cα|CγCγ |Cβ can be found.



TABLE IV
α, β ≤ γ ≤ π

2

CαCγ |CγCβ κ1 κ2 κ3 c

R
+
αL

+
γ R

−

γ L
−

β
α α + γ α − β b

L
+
αR

+
γ L

−

γ R
−

β
α α + γ α − β −b

R
−

α L
−

γ R
+
γ L

+

β
−α −α − γ −α + β b

L
−

α R
−

γ L
+
γ R

+

β
−α −α − γ −α + β −b

Cα|CγCγ |Cβ κ1 κ2 κ3 κ4 c

R
+
α L

−

γ R
−

γ L
+

β
α α − γ α − 2γ α − 2γ + β b

L
+
α R

−

γ L
−

γ R
+

β
α α − γ α − 2γ α − 2γ + β −b

R
−

α L
+
γ R

+
γ L

−

β
−α −α + γ −α + 2γ −α + 2γ − β b

L
−

α R
+
γ L

+
γ R

−

β
−α −α + γ −α + 2γ −α + 2γ − β −b

TABLE V
α, β ≤ π

2
AND d ≥ 0

CαSdCβ κ1 κ2 c1 c2 c3 c4

R
+
α S

−

d
R

+

β
α α + β −d 0 −b −b

L
+
α S

+

d
L

+

β
α α + β d 0 b b

R
+
αS

−

d
L
−

β
α α − β −d −2b b −b

L
+
α S

+

d
R

−

β
α α − β d 2b −b b

R
−

α S
+

d
R

−

β
−α −α − β d 0 −b −b

L
−

α S
−

d
L
−

β
−α −α − β −d 0 b b

R
−

α S
+

d
L

+

β
−α −α + β d −2b b −b

L
−

α S
−

d
R

+

β
−α −α + β −d 2b −b b

The goal configuration of CαCγ |CγCβ is

x = −c(4 sinκ1 − 2 sinκ2 − sin κ3) (25)
y = c(4 cosκ1 − 1 − 2 cosκ2 − cosκ3) (26)
θ = κ3, (27)

and the goal configuration of Cα|CγCγ |Cβ is

x = −c(2 sinκ1 − 2 sinκ2 + 2 sinκ3 − sinκ4) (28)
y = c(2 cosκ1 − 1 − 2 cosκ2 + 2 cosκ3 − cosκ4)(29)
θ = κ4, (30)

in which κ1, κ2, κ3, κ4, and c are the parameters in Table
IV. Wheel-rotation of such trajectories is α + 2γ + β.

D. CαSdCβ

In Table V, the list of minimum wheel-rotation trajectories
of type CαSdCβ can be found. The goal configuration of
CαSdCβ is

x = c1 cosκ1 + c2 sin κ1 + c3 sin κ2 (31)
y = c1 sin κ1 − c2 cosκ1 − c3 cosκ2 + c4 (32)
θ = κ2, (33)

in which κ1, κ2, c1, c2, c3, and c4 are the parameters in Table
V. Wheel-rotation of such trajectories is α + d + β.

θ = 0 θ =
π

8

θ =
π

4
θ =

3π

8

θ =
π

2
θ = π

Fig. 8. Level sets of the cost-to-go function for θ = 0,
π
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π
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E. CαCπ

2
SdCβ and CαSdCπ

2
Cβ

In Table VI, the list of minimum wheel-rotation trajecto-
ries of type CαCπ

2
SdCβ and CαSdCπ

2
Cβ can be found.

The goal configuration of such trajectories is

x = c1 sin κ1 + c2 cosκ1 + c3 sin κ2 (34)
y = −c1 cosκ1 + c2 sin κ1 − c3 cosκ2 + c4 (35)
θ = κ2, (36)

in which κ1, κ2, c1, c2, c3, and c4 are the parameters in Table
VI. Wheel-rotation of such trajectories is α + π

2
+ d + β.

F. LαRπ

2
SdLπ

2
Rβ and RαLπ

2
SdRπ

2
Lβ

In Table VII, the list of minimum wheel-rotation trajec-
tories of type LαRπ

2
SdLπ

2
Rβ and RαLπ

2
SdRπ

2
Lβ can be

found. The goal configuration of such trajectories is

x = c1 sin κ1 + c2 cosκ1 + c3 sin κ2 (37)
y = −c1 cosκ1 + c2 sin κ1 − c3 cosκ2 − c3 (38)
θ = κ2, (39)



TABLE VI
d ≥ 0

Range CαCπ

2

SdCβ κ1 κ2 c1 c2 c3 c4

α, β ≤ π
2

R
+
α L

+
π

2

S
+

d
R

−

β
α α +

π
2
− β −2b − d 2b −b −b

α, β ≤ π
2

L
+
αR

+
π

2

S
−

d
L
−

β
α α +

π
2
− β 2b + d −2b b b

α + β ≤ π
2

R
+
α L

+
π

2

S
+

d
L

+

β
α α +

π
2

+ β −2b − d 0 b −b

α + β ≤ π
2

L
+
α R

+
π

2

S
−

d
R

+

β
α α +

π
2

+ β 2b + d 0 −b b

α, β ≤ π
2

R
−

α L
−

π

2

S
−

d
R

+

β
−α −α − π

2
+ β −2b − d −2b −b −b

α, β ≤ π
2

L
−

α R
−

π

2

S
+

d
L

+

β
−α −α − π

2
+ β 2b + d 2b b b

α + β ≤ π
2

R
−

α L
−

π

2

S
−

d
L
−

β
−α −α − π

2
− β −2b − d 0 b −b

α + β ≤ π
2

L
−

α R
−

π

2

S
+

d
R

−

β
−α −α − π

2
− β 2b + d 0 −b b

Range CαSdCπ

2

Cβ κ1 κ2 c1 c2 c3 c4

α, β ≤ π
2

R
+
αS

−

d
L
−

π

2

R
−

β
α α − π

2
− β −2b −2b − d −b −b

α, β ≤ π
2

L
+
α S

+

d
R

−

π

2

L
−

β
α α − π

2
− β 2b 2b + d b b

α + β ≤ π
2

R
+
α S

−

d
R

+
π

2

L
+

β
α α +

π
2

+ β 0 −2b − d b −b

α + β ≤ π
2

L
+
α S

+

d
L

+
π

2

R
+

β
α α +

π
2

+ β 0 2b + d −b b

α, β ≤ π
2

R
−

α S
+

d
L

+
π

2

R
+

β
−α −α +

π
2

+ β −2b 2b + d −b −b

α, β ≤ π
2

L
−

α S
−

d
R

+
π

2

L
+

β
−α −α +

π
2

+ β 2b −2b − d b b

α + β ≤ π
2

R
−

α S
+

d
R

−

π

2

L
−

β
−α −α − π

2
− β 0 2b + d b −b

α + β ≤ π
2

L
−

α S
−

d
L
−

π

2

R
−

β
−α −α − π

2
− β 0 −2b − d −b b

TABLE VII
α + β < 2 AND d ≥ 0

CαCπ

2

SdCπ

2

Cβ κ1 κ2 c1 c2 c3

R
+
αL

+
π

2

S
+

d
R

−

π

2

L
−

β
α α − β −4b − d 2b b

L
+
αR

+
π

2

S
−

d
L
−

π

2

R
−

β
α α − β 4b + d −2b −b

R
−

α L
−

π

2

S
−

d
R

+
π

2

L
+

β
−α −α + β −4b − d −2b b

L
−

α R
−

π

2

S
+

d
L

+
π

2

R
+

β
−α −α + β 4b + d 2b −b

in which κ1, κ2, c1, c2, and c3 are the parameters in Table
VII. Wheel-rotation of such trajectories is α + π + d + β.

VI. COST-TO-GO FUNCTION

In Figure 8, level sets of the cost-to-go function for some
goal orientations are presented. In computing the cost-to-go
function, initial configuration is assumed to be (0, 0, 0), and
goal orientation θ is assumed to be 0, π

8
, π

4
, 3π

8
, π

2
, and π.

Numerical computations show that minimum wheel-
rotation cost-to-go function is similar to Reeds-Shepp cost-
to-go function. Moreover, a collection of Reeds-Shepp curves
are among minimum wheel-rotation trajectories. This may
suggest that minimum wheel-rotation cost-to-go function is
equal to Reeds-Shepp cost-to-go function. However, mini-
mum wheel-rotation trajectories are different from Reeds-
Shepp curves because there are minimum wheel-rotation
trajectories that contain rotation in place.

VII. CONCLUSIONS

We presented finite state machines for different cate-
gories of extremals. We then summarized maximal minimum
wheel-rotation trajectories. Using previous characterization
of maximal minimum wheel-rotation trajectories in [2], we
derived 52 different minimum wheel-rotation trajectories,
which are listed in Section V. We further determined the
end-point map in terms of the parameters. Thus, finding the
shortest path for every pair of initial and goal configurations
reduces to solving systems of equations for the path param-
eters.

As it was seen in Section VI, numerical computations
show that minimum wheel-rotation cost-to-go function is
similar to Reeds-Shepp cost-to-go function. Moreover, a col-
lection of Reeds-Shepp curves are among minimum wheel-
rotation trajectories. This may suggest that minimum wheel-
rotation cost-to-go function is equal to Reeds-Shepp cost-to-
go function. However, since loose minimum wheel-rotation
trajectories are composed of rotation in place and swing
segments, they are not identical with equivalent Reeds-Shepp
curves. Regions of activity of different minimum wheel-
rotation trajectories and the relationship between Reeds-
Shepp cost and minimum wheel-rotation in general remain
open questions.
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