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Abstract—Recent progress in DNA amplification techniques,
particularly multiple displacement amplification (MDA), has
made it possible to sequence and assemble bacterial genomes
from a single cell. However, the quality of single cell genome
assembly has not yet reached the quality of normal multicell
genome assembly due to the coverage bias and errors caused by
MDA. Using a template of more than one cell for MDA or com-
bining separate MDA products has been shown to improve the
result of genome assembly from few single cells, but providing
identical single cells, as a necessary step for these approaches, is
a challenge. As a solution to this problem, we give an algorithm
for de novo co-assembly of bacterial genomes from multiple
single cells. Our novel method not only detects the outlier
cells in a pool, it also identifies and eliminates their genomic
sequences from the final assembly. Our proposed co-assembly
algorithm is based on colored de Bruijn graph which has been
recently proposed for de novo structural variation detection.
Our results show that de novo co-assembly of bacterial genomes
from multiple single cells outperforms single cell assembly of
each individual one in all standard metrics. Moreover, co-
assembly outperforms mixed assembly in which the input
datasets are simply concatenated. We implemented our algo-
rithm in a software tool called HyDA which is available from
http://compbio.cs.wayne.edu/software/hyda.
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I. INTRODUCTION

Today, a variety of studies in medical and environmental
sciences benefit from genomic analysis of bacteria. A stag-
geringly large portion of the genomic content in environ-
mental samples is comprised of sequences that have never
been observed before. These uncharacterized sequences in
diverse places ranging from oceans to human mucus are
guessed to be predominantly of bacterial or viral origin.
This demonstrates the extent of the complexity and ubiquity
of bacterial genomes in our environment. Several projects
including Human Microbiome Project (HMP) and Earth
Microbiome Project (EMP) [1] aim at cataloguing microbial
communities in various locations.

However, lack of enough DNA material for sequencing
of one species at a time is often the main limiting factor
in microbiome studies. To sequence the genome of a new
bacterial species, we require a sample containing numerous
identical cells to extract micrograms of DNA material. The

conventional way consists in extracting a few bacterial cells
and culturing them separately. If a cell cultures successfully,
then the resulting colony provides the required amount of
good quality DNA material. Unfortunately, the proportion of
microbes that can successfully be cultured in the lab is less
than 1% [2]. Many bacterial cells cannot be cultured in the
lab since they often require complex symbiotic environments
to grow. In the case of such uncultivable species, the
only existing method to proceed involves whole genome
amplification a billion fold from femtograms to micrograms.

Different amplification methods have been proposed that
provide enough DNA material from very few cells or
even a single cell: (1) PCR such as primer extension pre-
amplification (PEP) and degenerate oligonucleotide primed
PCR (DOP) whose products are usually short DNA frag-
ments (less than 1 kbp), and (2) multiple displacement
amplification (MDA) which generates long DNA products
(up to 100 kbp with an average length of 12 kbp) [3],
[4], [5]. MDA works using random primers and a special
DNA polymerase called Φ29 with interesting characteristics.
The enzyme Φ29 is able to open up double stranded DNA
and continue its way without external thermal help if it
encounters a double stranded region while it is synthesizing
its complementary strand [2], [5]. This unique property of
Φ29 makes MDA an isothermal reaction that does not suffer
from the side effects of thermocycling such as GC-bias
as opposed to PCR. MDA provides a better coverage of
the genome in comparison to other methods, however, still
some parts of the genome are lost or poorly covered while
some others are orders of magnitude more abundant in the
final product. Although MDA is not a perfect amplification
method, it is currently the method of choice because of its
efficacy and lower coverage bias in comparison to other
methods [2]. Recently, a number of de novo assembly tools
such as Velvet-SC [6], SPAdes [7], and IDBA-UD [8]
have been developed for MDA datasets.

Fortunately, larger amounts of DNA as the initial template
can decrease this kind of amplification bias. This is due to
the fact that amplification bias in multiple MDA reactions of
the same genome happen randomly in different regions [9].
This suggests that lost or severely underrepresented genomic
regions in one MDA reaction may be present in another
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MDA reaction of the same genome. To benefit from this
fact, the product of different MDA processes on several cells
with the same genome can be combined and used together.
In this way, some MDA products represent those sequences
that are lost in the other processes. As a related but different
strategy, single cells can be pooled prior to amplification, and
MDA reaction can be done on the pool which again helps
to generate more uniform coverage of the genome. In fact,
it has been shown that starting with 5 to 10 initial cells as
opposed to a single cell significantly improves the result.

These pooling strategies are applicable only if we are
able to isolate a few single cells with identical genomes.
However, this turns into a chicken-and-egg problem: how
can we know that a few cells are identical before sequencing
their genomes while we require to know that they are
identical for a complete sequencing of their genomes? If the
cells are guessed to be identical but are not actually identical,
then mixing their DNA before or after amplification results
in a chimeric assembly which has to be strongly avoided.

We propose an elegant solution to this problem, which is
based on colored de Bruijn graph [10]. Iqbal et al. recently
proposed the colored de Bruijn graph in a different context
for de novo structural variation detection. We use it here for a
different application. Our algorithm accommodates multiple
input datasets and assigns a unique color to each dataset. In
our colored de Bruijn graph, a subset of colors is associated
with each k-mer vertex based on its occurrence in the input
datasets. Figure 1 depicts a window of E. coli genome that
has high coverage in one MDA reaction (Lane 8 of [6]) and
low coverage in another (Lane 4 of [6]). Both datasets have
∼ 600× average coverage. Our algorithm rescues this region
in Lane 4 through co-assembling it with its high coverage
counterpart in Lane 8. Our colored de Bruijn graph encodes
enough information to detect non-identical input datasets.
Therefore, our solution improves the assembly significantly
without the risk of mixing non-identical genomes into a
chimeric assembly.

II. METHODS

A. Indexing Colored k-mers

A k-mer is stored in a 2-bit compressed form, for k up
to a compile time constant MAXK . In- and out-edges of a
k-mer are (k+1)-mers that are represented by their extremal
left or right nucleotides. Therefore, in- and out-edges can be
stored in a bit array of size 8 (one byte). Our de Bruijn graph
of the input reads is stored in a hashed collection of splay
trees whose vertices are k-mers with their associated data:
colored counts, in- and out-edges, and internal flags. To save
space which is the bottleneck for de Bruijn graph algorithms,
we implemented splay tree in an array with relative rather
than absolute pointers. Each k-mer is stored exactly once,
therefore, this data structure defines a map from k-mers to
data. In the case of double stranded sequences, which is the
default mode, a k-mer and its dual (reverse complement)

are treated as a single entry in the map. In that case, the
minimum of the k-mer and its dual is stored in the map.

B. Condensation of the De Bruijn Graph

A 1-in 1-out chain of k-mers can be condensed into an
equivalent long vertex which we call a unitig. A maximal
unitig that cannot be extended further due to a branch
in the graph is called a contig [11]. In the first step
(assemble-unitig), our algorithm randomly picks 1-
in 1-out k-mers in the de Bruijn graph, extends them into
unitigs, and outputs those unitigs into a file. The remaining
k-mers, which are not 1-in 1-out, are output as single k-mer
unitigs. In the second step (assemble-finish), 1-in 1-
out unitigs are condensed in the same manner into contigs.

Note that our condensation is solely based on the topology
of the graph without any attention to the colorings. Ignor-
ing colorings is particularly helpful for single cell MDA
datasets; see Figure 1 for a case in which this strategy
rescues a contig that is poorly covered in one dataset.
Note that condensation of only similarly colored 1-in 1-out
vertices would break some contigs into multiple pieces due
to lack of coverage in some regions.

C. Memory Footprint Reduction

We now describe our novel technique to partition the de
Bruijn graph into multiple slices to reduce the peak memory
requirement for each slice. The key idea is a fast hash
function that assigns a slice to each k-mer. The simplest case
is a naı̈ve hash function that does not consider the adjacency
of k-mers. On the other hand, we would ideally like a hash
function that assigns all k-mers of a contig to the same slice.

Let w < k be an integer; define the minimizer of a vertex
(k-mer) to be the alphabetically minimum w-mer in the k-
mer. The minimizers were previously used to reduce the
number of required pairwise alignments in overlap-layout-
consensus assembly approaches [12]. We use that idea for a
different purpose. Let ω be the minimizer w-mer of k-mer
κ. Let smax be the number of slices into which the graph is
partitioned. In that case, κ is assigned to the slice number

s(κ) = h(ω) mod smax, (1)

in which h is an arbitrary uniform hash function. Since adja-
cent k-mers have identical minimizers with high probability,
traversing the graph under this scheme imposes less slice-
change overhead in comparison to the naı̈ve approach. In
HyDA, this slicing is performed in assemble-unitig
and the output unitigs of all slices are simply merged to
build the input unitigs to assemble-finish.

As long as w is large enough, this slicing scheme provides
a roughly balanced partition. Note that a contig may still be
broken into multiple subsequences in different slices unless
w is very small. We observed that w = 8 gives a suitable
tradeoff between partition balance and slice-contiguity both
for bacterial and mammalian genome assembly; HyDA uses
w = 8 by default.
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Figure 1: An E. coli contig (genomic locus 1,423,374-
1,423,590) in Lanes 4 and 8 of single cell datasets [6]. It
has low coverage (8.12×) in one dataset and high coverage
(3986.32×) in the other. Our co-assembly algorithm rescues
this low coverage contig.

D. Iterative Error Removal

The variable coverage cutoff, starting from 1 and gradu-
ally increasing, is used to remove contigs with low coverage.
The low coverage contig removal process is iterated with
increasing the cutoff in each round. In each iteration, the
contigs whose maximum coverage over all colors is less than
the cutoff are eliminated, and the remaining graph is recon-
densed. This causes some contigs to merge into larger ones
with recomputed average coverages. This process is similar
to Velvet-SC’s low coverage contig removal, but instead

of considering one average coverage, HyDA considers the
maximum average coverage over all colors [6]. We chose
maximum instead of mean since the information of each
color is important. For instance, mean would dilute the effect
of one distinct genome among hundreds, and would cause
the contigs of the distinct genome to be eliminated, whereas
maximum preserves those contigs. Our results in Table I
demonstrate that maximum performs well in eliminating
erroneous contigs while it preserves well-covered outlier
contigs, which could arise from distinct genomes, for further
downstream analysis.

E. Maximal Contig Sets

The output of iterative error removal is a collection of
contigs. Let C = {c1, c2, · · · , cn} be the set of remaining
contigs after error removal. Let Aj(ci) denote the average
coverage of contig ci in color j, for 1 ≤ i ≤ n and 1 ≤ j ≤
m. Pick ε ≥ 0 and let Cj = {ci ∈ C | Aj(ci) > ε} ⊂ C
be the set of contigs for each color j. The parameter ε
determines the tradeoff between specificity and sensitivity.
We chose ε = 0 in this study, but a non-zero ε might be
needed if there are erroneous or contaminant k-mers in one
color which also occur in the true genomic sequence of
another color.

Equip F = {C1, C2, · · · , Cm} with the subset partial
order. Maximal elements in F are the assemblies of candi-
date species. They are candidate and not precisely different
species, because it is possible to have two maximal contig
sets for the same species due to lack of coverage in some
regions caused by MDA. Such cases may be discovered
by looking at the graph topology and how those exclusive
contigs complete other contig sets. We leave this idea for
future work as it requires larger real or simulated datasets.

In this work, we computed the maximal elements in F
as output assemblies. Pritchard has given a sub-quadratic
algorithm to compute the maximal elements in a partial
order induced by subset relation [13]. It is practically more
efficient than the naı̈ve all-pairs comparison if m, the number
of colors, is large. For this study, we implemented the naı̈ve
algorithm to compute the maximal elements of F . We plan
to implement the Pritchard’s algorithm in the future.

III. RESULTS

A. Datasets

We used the datasets published by Chitsaz et al. [6] in
which two E. coli single cells and one S. aureus single
cell were isolated and their genomes were independently
amplified with MDA. The resulting amplified DNA of one
E. coli cell was sequenced in 4 lanes of Illumina GAIIx
(Lanes 1-4), and the resulting amplified DNA of the other
E. coli cell was sequenced in 3 lanes of Illumina GAIIx
(Lanes 6-8). Therefore, we have 7 lanes of E. coli genomic
MDA sequence from two biological replicates, in 100 bp
long reads with an average coverage of ∼ 600× per lane.

563



The resulting amplified DNA of S. aureus was sequenced
in 2 lanes of Illumina GAIIx with an average coverage of
∼ 1800× per lane. We have two lanes of S. aureus each
with three times the coverage of one E. coli lane.

B. Experiments

We assembled the following datasets with k = 55:

• Mixed unicolored assembly of 7 E. coli lanes and 2
S. aureus lanes: we concatenated the reads in all those
lanes and assembled the resulting aggregated dataset
with HyDA. We used a coverage cutoff of 400.

• Colored assembly of 7 E. coli lanes and 2 S. aureus
lanes: we assigned a unique color to each of the 9
datasets and assembled them with HyDA. We used
a coverage cutoff of 100. We then extracted E. coli
contigs from the final assembly based on their coverage
in the 7 E. coli colors.

• Mixed assembly of 7 E. coli lanes: we concatenated the
reads in the 7 E. coli lanes and assembled the resulting
aggregated dataset with HyDA using cutoff 400.

• Colored assembly of 7 E. coli lanes: we assigned a
unique color to each of the 7 datasets and assembled
them with HyDA using cutoff 100.

C. Evaluation of Assemblies

We used GAGE [14] which is a standard assembly eval-
uation tool to compare the 4 assemblies described above
in Section III-B and the E+V-SC single cell assembly of
E. coli Lane 1 in [6]. The results are presented in Table I. It
is clear from Table I that when we assemble a few identical
cells the result is more accurate than the assembly of just
one cell. The first column of Table I shows the evaluation
results of an E. coli assembly using just one uncultivated
cell. That assembly has 281,060 missing reference bases
(about 6.06%), while another E. coli assembly using multiple
identical cells has just 1,289 missing reference bases (about
0.03%) shown in the second column. Also, when some iden-
tical cells are used in assembly, other important factors such
as SNPs, indels, and other variations improve significantly.
Our results show that the single cell assembly has 100 SNPs
and 34 indels < 5 bps, whereas multicell assembly has only
5 SNPs and 6 indels < 5 bps.

Mixed and colored assemblies have roughly similar char-
acteristics. The second column of Table I represents the
characteristics of mixed assembly when HyDA assembled a
pool of 7 E. coli lanes coming from 2 biological replicates
with cutoff 400. The third column is the colored assembly
of the same dataset with cutoff 100. Both assemblies are
missing less than 0.05% of reference genome bases and
containing about 12% extra bases that are shown to be
contaminants [6]. The only noticeable difference between
the two assemblies is their N50, NG50, and corrected N50
[14], [15]. The N50 of the mixed assembly is 34,040 and its
corrected N50 is 37,682, while the N50 and corrected N50

of the colored assembly are about 6 kbps less, at 27,562 and
31,445 respectively.

The only noticeable weakness of colored assembly is the
size of contigs. The reason is that low multiplicity k-mers
are iteratively eliminated. The multiplicity of a k-mer in the
mixed dataset is the number of its occurrences in all reads
from all cells, but the colored multiplicity of a k-mer is an
array that keeps the multiplicity of each color separately.
The maximum over all colors is computed for determining
low coverage contigs in the colored case, whereas the mixed
coverage is the sum of the colored coverages. That is why the
cutoffs are different for the colored and mixed assemblies.
This slight difference causes a mild difference in the N50
and NG50 of mixed and colored assemblies.

The colored assembly using 7 E. coli lanes and 2 S. aureus
lanes coming from 2 uncultivated E. coli and one unculti-
vated S. aureus cells contained 3,784 contigs. The coverage
in both S. aureus colors of 2,130 contigs was zero while most
of their E. coli colors had positive coverage. On the other
hand, the coverage in E. coli colors of 1,862 contigs was zero
while both S. aureus colors had positive coverage. The final
assembly of 7 E. coli and 2 S. aureus lanes with colored de
Bruijn graph, when S. aureus contigs were eliminated, was
similar to the colored assembly of 7 E. coli lanes; see Table I.
Provided that the input species are sufficiently different and
MDA reactions cover a high portion of the genomes, we can
easily find identical cells by clustering contigs. Performing
the same experiment on more than 2 species is left as future
work as it requires more data.

As mentioned above, the advantage of colored de Bruijn
graph becomes clear when a combination of non-identical
cells is assembled. The last two columns of Table I represent
the results of the mixed and the E. coli portion of the colored
assembly of 7 E. coli and 2 S. aureus lanes. The mixed
assembly covers the reference genome very well and just
misses 1,289 bps of 4,639,675 bases (about 0.03%) of E. coli
genome, but it contains 3,662,149 extra bases (about 44%)
corresponding to S. aureus genome and contaminants. On
the other hand, the E. coli portion of the colored assembly
misses only 2,114 bps (about 0.05%) while it contains
nearly one sixth extra bases (526,119 bps) which are only
contaminant [6].

IV. CONCLUSION

We gave an algorithm and its implementation HyDA for
de novo co-assembly of bacterial genomes from multiple
single cells. Our proposed co-assembly algorithm is based
on colored de Bruijn graph [10] in which each input dataset
is annotated by a unique color. Using HyDA, we showed
that co-assembly of bacterial genomes from multiple single
cells outperforms single cell assembly of each individual one
in all metrics. Moreover, co-assembly outperforms mixed
assembly in all metrics except contiguity. To mitigate this
mild contiguity loss, we suggest a mixed re-assembly of
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E+V-SC HyDA

Single Cell Mixed Assembly of Colored Assembly of Mixed Assembly of Colored Assembly of
Lane 1 Identical Cells Identical Cells Non-identical Cells Non-identical Cells

Assembly Size 4,570,583 5,272,627 5,240,693 8,274,855 5,281,487

Missing Ref Bases (%) 281,060 (6.06%) 1,289 (0.03%) 2,114 (0.05%) 1,289 (0.03%) 2,114 (0.05%)

Extra Bases (%) 279,721 (6.12%) 659,982 (12.59%) 615,808 (11.75%) 3,662,149 (44.26%) 656,771 (12.44%)

SNPs 100 5 5 5 5
Indels < 5 bp 34 8 6 8 6
Indels ≥ 5 bp 4 4 4 4 4

Inversions 0 0 0 0 0
Relocations 4 2 3 2 3

N50 32,485 34,040 27,562 29,823 26,903

NG50 32,051 39,340 32,051 54,505 32,051

Corrected N50 30,094 37,682 31,445 37,682 31,445

Table I: Comparison of GAGE [14] evaluation results for E. coli assemblies obtained from a single cell with E+V-SC (Lane
1 of [6]) and multiple identical (Lanes 1-4 and 6-8 of [6]) and non-identical cells (Lanes 1-4 and 6-8 plus two lanes of S.
aureus in [6]) with HyDA in mixed and colored mode. GAGE’s corrected N50 is the N50 of maximal contiguous pieces
of contigs that align to E. coli K-12 reference genome without ≥ 5 bp indels [14]. E. coli contigs are extracted from the
colored assembly of non-identical cells in a post-processing step based on their coverage in E. coli colors. Extra bases are
due to contaminants, and that is why the number of extra bases in multicell assemblies is higher than that in single cell one
[6]. The best results are shown in bold face. NG50 is the size of the contig the contigs larger than which cover half of the
genome size [15]. All contigs are considered in all assemblies, particularly ultrashort single k-mer ones.

those datasets that fall into the same cluster, i.e., identified
as the same species, after clustering the contigs based on
their colored coverages.
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