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1 Introduction

The central dogma of molecular biology characterizes RNA as a simple working copy of DNA, simply
transporting a code from the genome into the protein biosynthesis machinery [14, 15]. However,
recent discovery of RNA interference (RNAi) [25, 26], the post transcriptional silencing of gene
expression via interactions between mRNAs and their regulatory RNAs, has drastically changed
the picture that is portrayed by the central dogma. In the new picture, non-coding RNAs (ncRNAs)
play a significant regulatory role in the cell. FANTOM and ENCODE genome annotation studies
have revealed that a large fraction of the genome sequences give rise to ncRNAs [24,58].

A recent computational screen estimated the number of small regulatory RNAs, which form
an important class of non-coding RNAs, in Arabidopsis thaliana to be in the order of 75,000 [61].
Among small RNAs, two subclasses form the bulk of all regulatory RNAs: microRNAs (miRNAs)
and small interfering RNAs (siRNAs) — which are of similar length (21 to 25 nt) and composition
but different by origin. It is predicted that these two subclasses regulate at least one-third of
all human genes. There are many other classes of non-coding RNAs with functionalities beyond
simple regulation of gene expression: examples include snoRNAs, snRNAs, gRNAs, and stRNAs,
which respectively perform ribosomal RNA (rRNA) modification, RNA editing, mRNA splicing and
developmental regulation [32]. Even for these well-studied RNAs, their precise mode of function
remains poorly understood.

In addition to such endogenous ncRNAs, antisense oligonucleotides have been synthesized as
exogenous inhibitors of gene expression. Antisense gene silencing technology is currently used as
a research tool and for therapeutic purposes. The therapeutic objective of antisense technology is
to block the production of disease-causing proteins. In principle, these artificial regulatory RNA
molecules could be employed as drugs for the treatment of a variety of human diseases including
various types of cancer, rheumatoid arthritis, brain diseases, and viral infections [27]. As a research
tool, antisense nucleic acids may be used to study metabolic networks by controlling or interfering
with the dynamics and function of various modules in the network. Furthermore, synthetic nucleic
acid systems have been engineered to self-assemble into complex structures performing various dy-
namic mechanical motions [33, 62, 66]. Despite advances in computational studies of non-coding
RNA, there are still many open areas and unresolved issues particularly for high-throughput appli-
cations based on the new genome sequencing technologies.
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This tutorial refers to some computational methods and open areas related to the study of
ncRNAs. We summarize RNA folding and folding kinetics methods in Section 2. A brief overview
of methods to predict RNA-RNA interaction structure and probability is presented in Section 3.
Finally, detection of ncRNAs in a reference genome or from a collection of read sequences is reviewed
in Section 4.

2 RNA secondary structure

Since the early works of Waterman and Smith [65] and Nussinov et al. [47], several computational
methods have emerged to study the secondary structure thermodynamics of nucleic acids. The
secondary structure of a nucleic acid is composed of its paired and unpaired bases. In the core
of secondary structure thermodynamics of nucleic acids lies an energy model. Among all energy
models, including polymer-based approaches [36], the Nearest Neighbor thermodynamic model has
become the standard [40]. In the standard energy model, a secondary structure is decomposed
into loops whose energies contribute additively to the free energy of the structure. More precisely,
the standard energy model is based on the assumption that stacking base pairs and loop entropies
contribute additively to the free energy of a nucleic acid secondary structure. The standard model
has been extended for pseudoknots [10, 22] and RNA-RNA interaction structures without zigzags
[12].

Prediction of RNA secondary structure is NP-Hard in general [38]. Therefore, state of the
art RNA structure prediction algorithms deal with either unpseudoknotted structures or pseudo-
knots with limited complexity. Based on additivity of the energy, efficient dynamic programming
algorithms for prediction of the minimum free energy secondary structure [2,47,53,65,67] and com-
puting the partition function for a single strand [22,41] and two interacting strands [12,21,35] have
been developed. Condon et al. characterize the complexity hierarchy of RNA secondary structure
prediction algorithms [13]. Algorithms to predict the centroid of the Boltzmann ensemble [19] and
to sample structures from the ensemble have been given [20,50].

There are approaches that improve structure prediction using machine learning to estimate
the energy parameters [5, 23]. A natural extension of those works would be using active learning
methods to propose new experiments that maximize the improvement. However, the accuracy of
structure prediction algorithms is sometimes unsatisfactory, in which case SHAPE (selective 2’-
hydroxyl acylation analyzed by primer extension) chemistry information [42] is incorporated into
the standard energy model to improve the results [17]. In some cases, energy density minimization
rather than energy minimization improves structure prediction [3].

Folding pathways. Some RNA molecules are able to fold into alternative structures under chang-
ing environmental conditions [7, 55]. Moreover, speed of RNA folding and potential intermediary
folding traps play vital role in cell processes. Therefore, knowledge of folding pathways between
pairs of RNA structures is essential for predicting RNA function. Prediction of folding pathways
and energy landscapes have been studied in many works; see [30] for a comprehensive review. Such
methods are basically different from one another in terms of (1) level of granularity of moves,
and (2) computation of local moves and connectivity. Usually, level of granularity varies from
single base pairs [28] to loops [16]. Several heuristics have been proposed for energy barrier calcula-
tion [29,31,43,57] which is an important component in many approaches; see [56] and the references
therein which presents a motion planning approach on an approximated energy landscape.
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3 RNA-RNA interaction

Prediction of RNA-RNA interaction structure and probability is a vital tool for ncRNA studies.
Some initial attempts to analyze the thermodynamics of multiple interacting nucleic strands con-
catenate input sequences, in silico, and consider them as a single strand. For example, pairfold [6]
and RNAcofold from Vienna package [8] concatenate two input sequences into a single strand and
predict its minimum free energy structure. Dirks et al. present a method, as a part of NUPack,
that computes the partition function for the whole ensemble of complex species, carefully con-
sidering symmetry and sequence multiplicities [21]. Even if pseudoknots are considered in these
approaches, some useful interactions are excluded while some irrelevant interactions are included.
Alternatively, there are methods, such as UNAFold [18, 39], RNAhybrid [51], and RNAduplex from
Vienna package [8], that avoid internal base-pairing in either strand and predict the minimum
free energy hybridization secondary structure or compute hybridization partition function. These
approaches work only for simple cases, without intramolecular structure, involving typically very
short strands. Another group of methods, such as RNAup [45], IntaRNA [9], and biRNA [11], pre-
dict the secondary structure of each individual RNA independently, and then predict the (most
likely) hybridization between the unpaired regions of the two molecules and the restructuring of
the complex to a minimum free energy conformation [54,63].

More advanced approaches aim to predict the minimum free energy interaction structure be-
tween two interacting strands under more complex energy and interaction models. IRIS is a dy-
namic programming algorithm to maximize the number of base pairs between interacting nucleic
acids [49] (see [37] for a grammar based approach to the same problem). inteRNA [2] as a part of
taveRNA [1] is an algorithm for prediction of the minimum free energy interaction structure under
three different models: 1) base pair counting, 2) stacked pair energy model, and 3) loop energy
model. Alkan et al. prove that the general problem of RNA-RNA interaction prediction under
all three energy models is NP-Hard [2]. They suggest some natural constraints, namely to exclude
intramolecular pseudoknots, crossing intermolecular bonds, and zigzags, on the topology of possible
joint secondary structures, which are satisfied by all examples of complex RNA-RNA interactions
in the literature. Chitsaz et al. give piRNA [12] to compute the interaction partition function and
base pair probabilities for the same type of interaction structures; see also [35]. piRNA also predicts
the ensemble centroid and derives various quantities such as melting temperature and equilibrium
concentrations.

4 Detection of non-coding RNAs

There are three distinct approaches to detecting non-coding RNAs. High-throughput transcrip-
tomics data provide a wealth of data from which complete transcripts can be reconstructed. Al-
though this sounds straightforward, the prevalence of alternative transcription starts, alternative
splicing, and alternative polyadenylation creates a highly complex transcriptional pattern at most
genomic loci. Disentangling this complexity from both array of sequencing data is in practice
hampered by technical limitations, so that at present experimental studies alone cannot provide
a complete picture. Once individual transcripts are extracted, it can be surprisingly difficult to
determine whether a transcript is coding for a (possibly short) peptide.

Homology based approaches to RNA gene finding are by definition limited to known RNA
families, e.g. those collected in the Rfam database. A large fraction of non-coding RNAs are short
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and/or poorly conserved in sequence so that the applicability of blast [4] and HMMs is fairly
limited. In contrast to protein sequences, ncRNAs tend to contain much less conserved information.
As a consequence, the conceptually simple problem of homology search becomes a complex and
technically demanding task. Sequence-structure based methods, in particular infernal [46], define
the state of the art for automatic methods. A recent set of detailed case studies, however, showed
that semi-automatic strategies can be successful in the “twilight zone” where generic approaches
from blast to infernal start to fail [44]. The basic idea is to generate candidate sets that are
then filtered by additional criteria, leading to an extended set of trusted homologs that are then
used to modify the search patterns.

De novo approaches to ncRNA gene finding are typically based on signatures of stabilizing
selection. QRNA [52], evofold [48], RNAz [64] use different methodologies to achieve the same
goal: determine whether the substitution patterns support selection of RNA secondary structure
in a set of aligned sequences. The same basic principle is exploited in several publications that
use (computationally much more expensive) structural alignments instead of sequence alignments
[59,60]. Most recently, it was shown that conserved intron positions can also be utilized to detect
evolutionary conserved transcripts without utilizing other features [34].
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