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Abstract—In order to realize the long-term vision of intelli-
gent co-robots capable of competent proxemic interaction with
humans, it is important that our research community fully define
the problem space and articulate its inherent challenges. In
particular, we must recognize that many problems in the space
may not be computable or definable, and must determine ways
to address this challenge moving forward. This paper broadly
sketches six key challenges in the social co-robotics problem space
and suggests several paths toward solving them, such as Wizard-
of-Oz constraints and problem satisfication.

I. INTRODUCTION

Three recent U.S. Government reports and funding ini-
tiatives in robotics - the CCC Robotics Roadmap [26], the
National Intelligence Council Global Trends 2030 [5], and the
National Robotics Initiative [17] - all strongly emphasize the
theme that in order to realize the vision of intelligent, capable
co-robots, robots must be able to operate intelligently in close
proximity to (and with) humans.

The co-robotics problem domain includes both proximate
and remote interaction [12], and covers a wide range of
human environments. In this paper, we focus specifically on
problems relating to co-robots in human social environments
(HSE). These are any environments in which a robot operates
proximately with humans. We define these robots as social
co-robots, in that they operate in an HSE, are physically
embodied, and have at least some degree of autonomy.

It is worth noting that social co-robots are not necessarily
sociable [2] - they do not necessarily need to interact with
us interpersonally. For example, a service robot that empties
the dishwasher may not be sociable, but because it operates in
an HSE with the aforementioned characteristics it is a social
co-robot.

Fig. 1 depicts the broad application space for co-robots in
human environments, and emphasizes a few application areas
where social co-robots in HSEs are warranted. Exemplar areas
include personal assistive robots (physical and cognitive),
educational robots, robots for leisure activities, service robots,
and robots in clerical domains. These application areas are not
meant to be mutually exclusive, but the majority of problems
in, for example, biomolecular or field robotics, are not usually
social in nature.

This paper will define six challenges unique to the social
co-robotics problem domain (Section II), then suggest some
possible avenues to explore for addressing them (Section III).

Fig. 1. The co-robotics problem domain can be divided into two domains:
human social environments, where proximate interaction is required, and
others, where remote interaction is more common. None of these areas are
intended to be mutually exclusive.

II. SIX KEY CHALLENGES IN SOCIAL CO-ROBOTICS

Fig. 2 depicts several of the unique set of challenges that so-
cial co-robotics faces. While many of these problem domains
are tied to the three traditional robotics problems (perception,
cognition, and action), they are much more complex in scope.
These problems may not be computable, or even definable.
Further, several of these problems resolve into fundamental
AI-complete problems, such as natural language understanding
[14], making them intractable.

It is critical as a community we articulate the inherent
hardness of these problems, and recognize there is no silver
bullet for solving them [24].

A. Problem 1: Dynamic Spaces

One thing unique to social co-robots is that they must
operate in HSEs with humans present. Humans by their very
existence create unforeseen challenges to robotics that are still
relatively new to the field. A workshop parallel to this one



Fig. 2. Social co-robotics has a unique set of challenges, many of which are entirely unlike traditional robotics problems in terms of their level of complexity
as well as the challenge in adequately defining them. Six problem domains are listed above.

at RSS is called “Robots in Clutter”, and its CFP describes
many of these challenges: vision under cases of clutter and
occlusion, dynamic navigation, action planning on the fly,
blind manipulation, and “sporadic user involvement” [35].

HSEs are often highly fluid and variable in nature, which
makes it difficult to anticipate or plan for these environmental
alterations as a robot. Traditional control paradigms, even
those that are well suited to and robust within dynamic envi-
ronments (e.g., [3, 11]) do not scale well to these complexities.

Part of the problem is that the way in which a robot
contends with a dynamic HSE is closely tied to its task
and embodiment, thus making it difficult to generalize the
problem. As robotics researchers, we can clearly envision a
general solution to the 2005 DARPA Grand Challenge that is
vehicle-independent. We cannot, however, envision a general
solution to a personal assistance robot that helps a person
with severe physical disabilities compete their daily tasks1.
Solving such a problem is multifaceted, contains potentially
an infinite number of dynamically changing subtasks, and any
solution attempt is intricately tied to the robot’s embodiment
and capabilities.

Thus, this problem area may not even be definable for
robotics, let alone computable. However, perhaps one way to
address it is through the use of social learning, described in
the next section.

B. Problem 2: Social Learning
One of the most critical things a social co-robot needs to be

able to do is learn and adapt to not only its environment, but
the co-humans within it. However, because HSEs are highly
fluid (as are people), it is important that social co-robots are
capable of lifelong learning [31]. This learning may occur
under direct human tutelage or independently.

1To appreciate the deep complexity of this problem, readers are encour-
aged to watch this time lapse video of a person with Muscular Dystrophy
performing his morning routine: http://youtu.be/aSDxVG0fVg4 [10]

In 2010, Carlson et al. [6] introduced NELL, the Never
Ending Language Learner. This project is teaching a machine
to “read the web”, by extracting facts while crawling textual
webpages 24 hours a day, 7 days a week. Another project,
RobotsFor.Me [32], may also be suitable to help enable
lifelong learning by letting people remotely log into a PR2
24/7 and teach it in an embodied, situated way.

However, even with these projects, learning about and
adapting to humans, and anticipating and modeling their
BDIs (beliefs, desires and intentions) is quite challenging,
and suffers from the same problem as the Dynamic Spaces
problem. Models for one paradigm with one robot with one
set of capabilities (e.g., a PR2 in an office environment, with
end-effectors and a Kinect) do not necessarily extend to others.
BDI modeling may be computable within a virtual agent space,
but may reach a point of being non-computable (or non-
definable) when embodied on a co-robotic system.

C. Problem 3: Sustainability

Another problem in social co-robotics concerns sustain-
ability, or long-term interaction [8]. What happens when the
novelty of a robot wears off? How does a robot adapt to
changes in the preferences of co-humans sharing the HSE?

Many of these problems inherently require a robot to exhibit
some degree of creativity, be attuned to the moods of its
proximate humans, and keep an inordinate sense of time and
history. However, creativity is likely NP-Complete [29], mood
awareness is at best AI-Complete (see Section II-D), and the
requisite granulaity of storage is not easily definable - the
representation strategy alone is likely AI-Complete [33].

D. Problem 4: Affect and Social Signal Awareness

One of the more commonly explored problems in social
robotics concerns the recognition and synthesis of affect [21]
and social signals [34]. While the precise definition of the
terms “affect” and “social signal” are frequently debated in



the affective science and social computing communities, most
agree that these terms denote the visual and aural channels
of human communication. Thus, a socially aware machine
infers meaning from a human’s face, gaze, posture, gestures,
proxemics, and prosody, and can generate these signals itself.

There is certainly a clear need for robots operating in HSEs
to be able to recognize and synthesize affect [26]. However,
Picard, recognized as the founder of the field of affective
computing, calls facial recognition alone one of the hardest,
most complex problems in computer science [22]. Indeed, if
one considers all of visual communication to be a component
of natural language (as most do [30]), the problem of affect
recognition is at best an AI-Complete problem: it inherently
requires natural language understanding [14].

The problem of affect synthesis is unfortunately no better
off from a complexity standpoint. Even in an asymmetrical
dialogue, visual communication is intimately tied to dialogue
content [1], situational context, a priori knowledge, expected
norms, and, of course, Social Learning. Thus, this problem,
too becomes at best an AI-complete problem, but at worst is
not even definable let alone computable.

E. Problem 5: Social Norms

Social norms are “a standard, customary, or ideal form
of behavior to which individuals in a social group try to
conform.” [4]. In the social co-robotics problem domain, this
encompasses several things. Social norms place constraints
on a robot’s actions, in that they must conform to people’s
expectations and the situation they are in [15]. This is not
to say co-humans will not forgive robot mistakes, our own
research suggests people may be willing to overlook a robot’s
social missteps [25]. Nonetheless, from a technology accep-
tance perspective, there is motivation to program robots to be
aware of social norms.

The Social Norm awareness problem is perhaps a superset
of the Affect and Social Signal Awareness problem, because
it requires additional knowledge to contextualize and classify
observed human behavior. A person screaming alone in one’s
house is quite different than screaming while attending a
sporting event. This problem space, too, is infinite, and thus
not easily definable or computable.

F. Problem 6: Societal Issues

As social co-robots share HSEs with people, they inherently
raise a plethora of societal issues, including privacy, security,
acceptability, and so on. While these issues are not necessarily
unique to social co-robotics, some of them may raise an alarm
of intrusiveness other co-robotics domains do not need to face.
To again draw on the example of biomolecular robotics; while
a person may express concerns over the use of micro-scale
drug delivery robots on an abstract level, they are unlikely
to experience the same vitriolic response as they might to an
embodied robot with agency in their home.

In his recent book Robot Futures [18], Nourbakhsh de-
scribes some of these vitriolic responses to robots, even in
places as innocuous as a science museum. This use, misuse,

and abuse of automated agents is not new, it dates back at least
60 years to Asimov’s writings [16]. It has recently garnered
attention in the HCI community by Parasuraman and Riley
[20], who stress the importance of closely examining these
attitudes and incorporating them into the design process.

This problem places a burden on social roboticists, because
in addition to contending with the plethora of computational
challenges that face our field, we further need to be concerned
about public opinion of our robots if we ever want them to
be purchased and used. Thus, iterative design and technology
acceptance is critical, even at early stages of research.

III. PATHS FORWARD

In social co-robotics, we tend to address these monumental
challenges in three ways: we ignore them, we “wizard away”
the problem by having a human compute the solution, or we
severely constrain the problem space.

As a community, ignoring these problems does not help us
advance our discipline. Instead, we suggest judicious use of
human computation (wizards) and developing new techniques
for problem satisficing as paths forward. We discuss these in
further detail below.

A. Judicious Use of Wizard-of-Oz
Presently, many researchers in social co-robotics use Wizard

of Oz (WoZ) control extensively, to solve most of the afore-
mentioned problems, such as natural language processing,
social understanding, dynamic space operation, etc. [23]. The
original idea behind the WoZ paradigm was to be part of
an iterative design process, a small aid in development as
other components came to fruition [13]. The paradigm was
not intended to be an end of and in itself; however, it has
lately been re-tasked to enable robotics researchers to “project
into the future” [8], enabling experiments which would be
impossible with present technology.

While this at first is a compelling idea, at closer inspection
the majority of problems a wizard is simulating in these
robotic systems actually fall within the aforementioned six
major problem domains of social co-robots. In other words,
wizards are simulating AI-Complete, non-definable, and non-
computable problems.

In no way do we argue for the total abdication of the
WoZ paradigm from social co-robotics research; instead, we
suggest roboticists be more careful in how they employ it.
For a roboticist intentionally designing a semi-autonomous
robot that will have human help when making decisions,
it may make sense to employ WoZ as a kind of real-time
human computation [27]. Other areas in the field of Artificial
Intelligence facing NP-hard problems have embraced this
paradigm, such as image labeling and machine translation -
why not social co-robots?

But for researchers using WoZ purely as a method for
testing complex psychological hypotheses involving co-robot
acceptance, we urge judicious use of its employment. We may
never have robots capable of some of these tasks, so it may be
scientifically disingenuous and unrealistic to run experiments
assuming their existence.



B. Problem Satisficing: “Good Enough” Social Co-robots

It may be the case that we cannot solve these monumental
challenges facing our field; perhaps these problems will remain
non-definable and non-computable forever. Nonetheless, it
may be possible that we can build “good enough” social
co-robots, where we solve problems well enough to enable
adequate operation in HSEs.

Davis [9] (invoking Simon [28]) writes “nature is a satis-
ficer, not an optimizer”. Organisms solve problems in an ac-
ceptable or satisfactory (though not necessarily optimal) way.
Why not robots? Certainly people have considered satisficing
controllers for robotics problems in the past (c.f. [19], [7]),
thus, we may be able to imagine ways to satisfice within the
social co-robotics problem space without over-reduction.

It is not yet clear what the dimensions of such a satisfication
might look like for social co-robots in HSEs; however, this
seems to be a wide open area of research. What is the
minimum functionality a social co-robot needs to complete its
tasks in HSEs? What level of failure are co-humans willing to
tolerate and excuse? There are many interesting questions in
this domain, and we look forward to exploring them.
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