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Abstract—The main paradigm for practical motion planning
in the last two decades is Probabilistic Road Map (PRM).
We propose an alternative paradigm called Soft Subdivision
Search (SSS). The SSS approach is based on two ingredients:
the standard subdivision of space, coupled with soft predicates.
Such predicates are conservative and convergent relative to exact
predicates. This leads to a new class of resolution-exact planners.

We view PRM and SSS as frameworks for broad classes of
planners. There are many parallels between SSS and PRM:
both frameworks are versatile, practical, easy to implement, with
adaptive local complexity. The critical difference is that SSS
avoids the Halting Problem of PRM. We address three issues:
(1) We axiomatize some basic properties that allow resolution-
exact planners to be constructed in the SSS framework.
(2) We show how soft predicates can be effectively and correctly
implemented using numerical approximations.
(3) We recover exact planners by extending our framework.

The SSS framework is a theoretically sound basis for new
classes of algorithms in motion planning and beyond. We discuss
the prospects of SSS planners being able to solve currently
challenging problems and their relation to PRM.

I. INTRODUCTION

Motion Planning is a fundamental problem in robotics. It

originated as the “findpath problem” in Artificial Intelligence

[3]. In the 1980s, computational geometers began the algo-

rithmic study of motion planning [19, 9], focusing on exact

planners: such planners return a path if any exists, and report

“No Path” otherwise. It was early observed that there are two

universal approaches for motion planning: Cell Decomposition

[16] and Retraction [19]. After the work of Canny [4], the

retraction is popularly known as the “roadmap approach”. In

the 1990’s the roadmap approach takes another turn.

¶1. Theory. Today, exact motion planning is textbook

material [6, 13] and continues to be actively investigated (e.g.,

[8]). Nevertheless its impact on robotics is modest: Zhang et al.

[22] noted that exact implementations have been limited to 3

degrees of freedom, and for simple robots only. Exactness

is costly as it implicitly requires algebraic numbers. The

techniques of Exact Geometric Computation [20] can avoid

direct manipulation of algebraic numbers, and is practical

for many basic problems. Nevertheless, the usual expedi-

ent is to replace exact arithmetic by approximate machine

arithmetic, leading to the ubiquitous problems of numerical

non-robustness. Efficiency aside, there is a fundamental but

less well-known barrier: the Turing computability of exact

algorithms for most non-algebraic problems is unknown [5].

This barrier exists in most problems beyond kinematic motion

planning. See [5] for a rare non-algebraic planning problem

that is computable using transcendental number theory.

¶2. Practice. Since the mid 1990’s, the Probabilistic Road

Map (PRM) paradigm has been dominant; Kavraki et al. [11]

gave the basic formulation. A more general viewpoint [12]

regards PRM as the probabilistic form of “Sampling Road

Maps”. For simplicity, we use “PRM” as surrogate for all

sampling methods. Quoting Choset et al [6, p.201]: “PRM,

EST, RRT, SRT, and their variants have changed the way

path planning is performed for high-dimensional robots. They

have also paved the way for the development of planners for

problems beyond basic path planning.” In his invited talk at

the workshop1 on open problems in this field, J.C. Latombe

stated that the major open problem of PRM is that it does not

know how to terminate when there is no path. In practice, the

algorithm is timed-out, but this leads to problems such as the

“Climbers Dilemma” giving rise to issues like the “Climbers

Dilemma” (Bretl 2005). We will call it the Halting Problem

for PRM (like the Halting Problem in Turing machines, it is a

semi-decidable). It is the ultimate form of the “Narrow Passage

Problem” [6, p. 201]. Latombe’s talk suggested promising

approaches such as Lazy PRM [2], but clearly a large part of

the literature is devoted to this issue. The theoretical basis for

PRM algorithms is probabilistic completeness [10], or more

generally, “sampling completeness”. But the Halting Problem

is inherent in such completeness.

¶3. Common Ground. We seek a common ground for

theory and practice: stronger theoretical guarantees without the

inordinate demands of exactness. Fortunately, exactness is a

mismatch for robotics. This is evident from the remark that all

physical constants, devices and sensors have limited accuracy.

Yet it does not absolve us from mathematical precision if

we wish the theoretical development of robotic algorithms

to thrive. This tension between practice and theory has led

to their divergent paths described above. We turn to the idea

of “resolution complete” methods, noting that the early work

of Brooks and Lozano-Perez [3] was already on this track.

It is known that resolution complete methods can avoid the

Halting Problem [22]. The notion of resolution completeness

is seldom scrutinized. Our companion paper [17] pointed

out some untenable or lacking interpretations, and proposed

1 IROS 2011 Workshop on Progress and Open Problems in Motion
Planning, September 30, 2011, San Francisco.



the notion of resolution-exactness. Surprisingly, resolution-

exactness has “inherent” indeterminacy, even for deterministic

algorithms using exact predicates. This indeterminacy is mild

compared to sampling completeness, and a good match for the

needs of robotics.

Resolution-exactness is basically a numeric/analytic con-

cept, but exactness is not an adjective we associate with

numerics. Our main contribution is to explicate ideas that are

intuitively known to practitioners, to provide a clear foundation

for theoretical algorithm designers to ply their craft. This

seems critical: without a clear foundation, many theoreticians

would shun such algorithms. Exact computation has served

as the foundation for over 2 decades, but its limitations are

showing (as discussed above). What we need is a viable exact

numerical foundation (cf. Smale’s effort in this direction).

We will argue that algorithms in our framework are not just

theoretically-sound but implementable and useful.

¶4. Overview of Paper. Our full paper [21] aims to expose

the foundations of resolution exactness. There are four themes:

(0) We take a leaf from the success of PRM research: the

simplicity and generality of PRM framework ensures that

implementers of this framework can get easy access to a

whole family of algorithms. This led us to formulate an

analogous framework called soft subdivision search (SSS).

Curious aside: PRM and SSS correspond (resp.) roughly to

the two universal approaches to motion planning, namely

retraction/roadmap and cell-decomposition.

(1) Next, we axiomatize the setting for SSS planners by

considering the problem of finding paths in Y ⊆ X connecting

given α, β ∈ Y where X is a normed linear space. The boxes

in subdivision trees may be shapes such as simplices. The

goal is to derive general principles to guide the design of

SSS planners. Here we must avoid the temptation of excessive

generality, leading to weak generic results about metric spaces.

We aim at a balance which captures a large class of problems

about which non-trivial theorems can be proved.

(2) One bane of exact algorithms is the “implementation

gap”. Exact primitives are typically algebraic but implementers

use machine arithmetic approximation, thereby forfeiting all

the guarantees of exactness. We derive principles for correct

implementation of soft predicates, and derive error estimates

to allow machine arithmetic filters.

(3) SSS planners take an input resolution parameter ε which

must be positive. If we admit ε = 0, the planners become

non-halting like PRM. We indicate solutions, leading to new

classes of exact algorithms.

Within the constraints of this workshop presentation, we

only address theme (0) and give a critical evaluation of SSS

planners for solving challenging planning problems.

II. BASICS

To aid further discussion, we need some definitions. Our

terminology is quite standard, but we rely on readers’ intuition

for now. Consider the standard kinematic motion planning

problem for a fixed rigid robot R0 ⊆ R
k (k = 2, 3) which

defines a configuration space Cspace = Cspace(R0). The

planner input is (ε,Ω, α, β) where ε > 0 is the resolution

parameter, Ω ⊆ R
k is a polyhedral set, and α, β ∈ Cspace.

The planner is resolution-exact (or ε-exact) if it has a constant

K > 1 such that on any input, it outputs an Ω-avoiding path

from α to β if there exist paths with clearance Kε; and it

outputs “No Path” if there are no paths with clearance ε/K .

The role of K is critical: it causes indeterminacy, but is also

the key to avoiding exact computation.

There are two ingredients in resolution-based methods:

first is the subdivision of Cspace. The subdivision may be

organized as a subdivision tree, often called quadtrees. Tree

nodes correspond to subsets B ⊆ Cspace with simple shapes

such as boxes or simplices. Although grid search is often

identified with resolution complete algorithms, we stress that

grid methods are usually a form of sampling and inadequate

for ε-exactness. The second ingredient is a classification

predicate to decide if a node B is free or not. The obstacle

set Ω defines the free space, Cfree = Cfree(R0,Ω) ⊆ Cspace.

Wlog, Cfree is an open set; its boundary ∂Cfree comprises

the semi-free configurations. Say α ∈ Cspace is stuck if it is

neither free nor semi-free. The exact classification predicate

is C : B 7→ C(B) ∈ {FREE, STUCK, MIXED} such that

C(B) =





FREE if B ⊆ Cfree,
STUCK if B ∩ Cfree is empty,

MIXED else.

It is easy to construct exact planners using C. Moreover C(B)
could be computed exactly for nice B (e.g., B is a box). But

our thrust is to avoid the high cost of exactness. The basic idea

(ansatz) is: in the presence of subdivision, exact predicates

can be replaced by suitable approximations. More precisely,

a predicate C̃ : B 7→ C̃(B) ∈ {FREE, STUCK, MIXED} is a soft

version of C if it is conservative (i.e., C̃(B) 6= MIXED implies

C̃(B) = C(B)), and convergent (i.e., Bi → p ∈ Cspace as

i → ∞ implies C̃(Bi) → C(p)). For analysis, we may also

need some measure of “effectivity” or convergence rate.

What we know: soft predicates are relatively easy to design

and to implement. Indeed, the computation of C̃ can be

correlated to the expansion of the subdivision tree T . LaValle

insightfully call this aspect of our work as “opening up the

blackbox of collision testing”. Soft predicates have nice prop-

erties like composability: if a polyhedral robot R0 ⊆ R
k has a

cover R0 = ∪m
i=1

Ti then we obtain a soft predicate for Ri from

soft predicates for the Ti’s. Thus predicates for complex robots

like R0 is reducible to simpler robots Ti. To ensure efficiency

and adaptivity, the technique of filters will prove essential (a

well-known phenomenon in numerical methods). We refer to

related work (not just in motion planning) exemplifying these

remarks (e.g., [14, 17, 18, 15]).

¶5. Critical Discussion. It is hard to claim novelty in an

old idea like resolution-based methods, although we claim new

theoretical foundations. It is harder to improve upon a 20-year

old paradigm like PRM, where remarkable advances have been



made over the years. Nevertheless, we claim a place for SSS

planners in practical robotics under PRM’s shadow.

First, we address a conceptual objection. Some critiques

view the “No Path” outcome in SSS planners as equivalent

to the “PRM time-out” but in resolution space. Hence it is

no less “arbitrary”. This analogy can mislead in two ways.

First, the said inherent inaccuracies in sensors, actuators and

physical constants mean that paths with clearance below some

(calculable) resolution are as good as “No Path”. So the

“No Path” outcome in SSS planners may be principled, not

arbitrary. Second, “time-out” in resolution search is only the

most obvious way terminate (we use it below), but it is not the

only way. In fact, it is a deeply interesting question to develop

techniques for fast detection of “No Path” (cf. [22, 7]).

Consider our suggestion that SSS is practical. The subdi-

vision infrastructure is well-understood and based on efficient

data structures like union-find. The soft predicates we design

[17] can mostly reduce to estimating distances between two

obstacle features (i.e., point, line or plane). This almost seems

trivial compared to exact algorithms; so SSS planners are

clearly implementable. But will these implementations be

practically efficient? Here, we invoke the evidence of prior

resolution-based work such as Zhu and Latombe [23], Barhe-

henn and Hutchinson [1], and Zhang, Kim and Manocha [22].

Of course, we must reinterpret them using our new perspective;

it is illuminating to revisit these papers with hindsight.

The preceding paragraph is not new except for our SSS

perspective. The deeper debate among roboticists is about the

ability of resolution methods to scale up in dimension. The

consensus is that resolution methods can only reach medium

degrees-of-freedom (DOF), while PRM reaches much higher2

degrees. Choset [6, p. 202] suggests that state-of-art PRM

can handle DOF in the range 5 − 12. They noted that a 10
DOF planar robot from Kavraki (1995) cannot be tackled by

other methods. However, we find no conceptual barriers for

SSS to match PRM. Randomness is not pertinent since SSS

can also expand randomly. A naive approach to resolution

methods yields tree sizes that are exponential in the depth; but

related subdivision work in root isolation [15] shows we can

achieve tree size that is worst-case polynomial in the depth.

The performance of SSS planners are highly dependent on

the tree expansion strategy; this is no different from PRM.

Indeed, the tree structure of subdivision seems to give SSS a

great advantage. Currently, we have limited (but encouraging)

experiments to support our intuition, but we feel the field is

wide open for experimentation.

III. TWO FRAMEWORKS FOR MOTION PLANNING.

We intend to view PRM as an algorithmic framework for

a large class of sampling-based planners. An algorithm within

the framework is3 just a specific instantiation, using particular

2We do not consider very highly flexible robots such as molecules, snakes,
humanoids, etc., where the DOF can go much higher than discussed here.
What counts as “success” is much less formal in such settings.

3 To be sure, there are degrees of specificity. The most specific instantiation
might be called “implementation” of some less specific “algorithm”.

data structures and subroutines.

¶6. The PRM Framework. There are many possible
formulations, but we follow LaValle [13, Section 5.4.1]: to
find a path connecting α, β ∈ Cfree, we maintain a graph
G = (V,E) where {α, β} ⊆ V ⊆ Cfree and edges in E
correspond to paths. We need three predicates: Free(u) to
test if configuration u is free; Connect(v, u) to test if the
(straight) motion from v to u is free; a termination criterion
that returns “success” (a path is found) or “failure” (time-out
or other condition).

PRM FRAMEWORK:
While (termination criterion fails):

1. Vertex Selection Method (VSM):
Choose a vertex v in V for expansion.

2. Configuration Generation Method (CGM):
Generate some u ∈ Cspace (perhaps near v)

3. Local Planning Method (LPM):
If Free(u),

Add u to V
If Connect(v, u), add (v, u) to E.

Return success or failure accordingly.

Choset et al. [6, p.198] noted that PRM is practical because

the predicate Free(u) is relatively cheap. The large literature

on collision detection is about this predicate. We offer another

reason for the great success of PRM: the framework allows

one to easily modify the constituent components (VSM, CGM,

LPM) to obtain a variety of algorithms for diverse needs. The

basic infrastructure is relatively stable, thanks to the simplicity

and generality of PRM. We want to emulate this in SSS.

¶7. The SSS Framework. In addition to the usual input

(ε,Ω, α, β), an initial box B0 ⊆ Cspace is given: we are

interested in paths restricted to B0. The subdivision tree T
is rooted at B0, and each node B ⊆ B0 is classified by a

soft predicate C̃. We grow T by expanding successive MIXED-

leaves until we find a path or conclude “No Path”.

SSS FRAMEWORK

1. While (C̃(Box(α)) 6= FREE) ⊳ Initialization
If Box(α) has length < ε, Return (”No Path”)
Else Expand(Box(α))

While (C̃(Box(β)) 6= FREE)
... do the same for β ...

2. While (Find(Box(α)) 6= Find(Box(β))) ⊳ Main Loop
If Q is empty, Return(“No Path”)
B ← Q.GetNext()
Expand(B)

3. Compute a FREE channel P from Box(α) to Box(β)
Generate and return the “canonical path” P inside P .

A priority queue Q = QT holds all MIXED-leaves of radius

r(B) ≥ ε. The routine Q.GetNext() returns a leaf of highest

priority which is split by Expand(B). The FREE boxes are

stored in a union-find structure for the connected components:

two boxes B,B′ are directly connected if dim(B∩B′) = d−1.

If “Box(α)” is a leaf of T containing α, our algorithm halts

as soon as Box(α) and Box(β) are in the same component.

The performance of SSS is naturally adaptive but highly

dependent on GetNext() and Expand(). For d ≥ 4 degrees of



freedom, careful expansion is critical; do not always expect to

split into 2d children. The methods in [23, 1, 22] fall under

our framework.

¶8. Similarities and Differences. There are many simi-

larities between PRM and SSS, especially in their contrasts to

exact algorithms. Both have two key subroutines: (i) search

strategies (VSM in PRM, GetNext() in SSS), and (ii) free-

ness testing (Free(u) in PRM, C̃(B) in SSS). Both SSS

and PRM have the ability to find paths before exploring

the entire Cfree. Thus, Hsu et al. [10, p. 640] calls this a

“foundational choice in PRM planning”. In contrast, exact

methods require expensive (non-adaptive) pre-processing to

compute a description of Cfree. Both frameworks naturally

compute a path, i.e., a parametrized curve in Cfree; exact

methods require a separate subalgorithm for this.

The key difference is that SSS planners have no Halting

Problem. In SSS we use a more demanding predicate C̃(B)
than Free(u). The benefit is that SSS can compute free

channels just by checking adjacency of two FREE boxes; PRM

needs an extra predicate Connect(v, u).

IV. CONCLUSION

In this paper, we described the SSS framework for ε-

exact planners. Ideas of resolution-limited algorithms are well-

known, but to our knowledge, the simple4 properties of soft

classifiers have never been isolated. These “simple ideas”

promise to create new algorithms that are practical and theo-

retically sound, not only in motion planning. There are many

open questions concerning SSS. Although there are interesting

theoretical questions, we feel the immediate challenge is to

prove the practical power of SSS. Following up on [17], we

plan to do this by designing and implementing a variety of soft

predicates and search strategies, from 6DOF robots, medium

DOF flexible robots (e.g., Kavraki robot), and complex robots.

Like PRM, we expect many variants of SSS to arise.

REFERENCES

[1] M. Barbehenn and S. Hutchinson. Toward an exact

incremental geometric robot motion planner. In Proc.

Intell. Robots and Systems 95, vol. 3, pp. 39–44, 1995.

[2] R. Bohlin and L.E. Kavraki. A randomized algorithm for

robot path planning based on lazy evaluation. Handbook

on Randomized Comput., pp. 221–249. Kluwer, 2001.

[3] R. A. Brooks and T. Lozano-Perez. A subdivision algo-

rithm in configuration space for findpath with rotation.

In 8th IJCAI - Vol. 2, pp. 799–806, San Francisco, 1983.

[4] John Francis Canny. The complexity of robot motion

planning. The MIT Press, 1988. PhD thesis, M.I.T.

[5] E.-C. Chang, S. W. Choi, D. Kwon, H. Park, and C. Yap.

Shortest paths for disc obstacles is computable. IJCGA,

16(5-6):567–590, 2006. Special Issue.

[6] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor,

W. Burgard, L. E. Kavraki, and S. Thrun. Principles of

4 Some reviewers of our work see only the safeness part of soft classifiers.
They fail to note that previous work are silent about convergence or effectivity.

Robot Motion: Theory, Algorithms, and Implementations.

MIT Press, 2005.

[7] J. Denny and N. M. Amato. Toggle PRM: A coordinated

mapping of C-free and C-obstacle in arbitrary dimension.

In Proc. WAFR. MIT, Cambridge, USA. June 2012.

[8] M. Safey el Din and E. Schost. A baby steps/giant

steps probabilistic algorithm for computing roadmaps in

smooth bounded real hypersurface. Discrete and Comp.

Geom., 45(1):181–220, 2011.

[9] D. Halperin, L. Kavraki, and J.-C. Latombe. Robotics.

In J. E. Goodman and J. O’Rourke, eds., Handbook of

Discrete and Comp. Geom., chap. 41. CRC Press, 1997.

[10] D. Hsu, J.-C. Latombe, and H. Kurniawati. On

the probabilistic foundations of probabilistic roadmap

planning. IJRR, 25(7):627–643, 2006.
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