
Experience-driven Predictive Control
Vishnu R. Desaraju and Nathan Michael

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{rajeswar, nmichael}@cmu.edu

Abstract—This work presents Experience-driven Predictive
Control (EPC) as a fast technique for solving nonlinear model
predictive control problems with uncertain system dynamics.
EPC leverages a linear dynamics model that is updated online
via Locally Weighted Project Regression (LWPR) to capture
nonlinearities, uncertainty, and changes in the system dynamics.
This allows the NMPC problem to be re-cast as a quadratic
program. The QP can then be solved via multi-parametric
techniques to generate a mapping from state, reference, and
dynamics model to a locally optimal, affine feedback control law.
These mappings, in conjunction with the basis functions learned
in LWPR, define a notion of experience for the controller as they
capture the full input-output relationship for previous actions the
controller has taken. The resulting experience database allows
EPC to avoid solving redundant optimization problems, and as
it is constructed online, enables the system to operate more
efficiently over time. We demonstrate the performance of EPC
through a set of simulation studies with a quadrotor micro aerial
vehicle that is subjected to unmodeled exogenous perturbations.

I. INTRODUCTION

As robots are deployed in complex and unknown real-
world environments, the ability to track trajectories accu-
rately becomes essential for safety. However, this can be
particularly difficult if the robot’s dynamics change online,
e.g., due to environmental effects or hardware degradation.
Furthermore, operation in these types of environments may
preclude reliable, high-rate communication with a base station,
and as a result, the robot must be able to operate safely
and reliable with typically limited onboard computational
resources. Therefore, in this work we aim to develop an
intelligent, computationally-efficient, feedback control strategy
that enables accurate and reliable operation in the presence of
unmodeled system dynamics.

High-rate adaptive control is easily achieved via feedback
control techniques, such as model-reference adaptive con-
trol [16] and L1 adaptive control [25]. However, this simplicity
may be at the expense of safety, as such methods do not
provide constraint satisfaction guarantees. Additionally, these
purely reactive techniques seek to eliminate the effects of
unmodeled dynamics, even when they may be beneficial. In
contrast, model predictive control (MPC) techniques seek to
balance the reactive nature of traditional feedback controllers
and the anticipative nature of infinite-horizon optimal control
techniques. Consequently, they can yield improved trajectory
tracking via finite-horizon optimization while reducing the
computational complexity relative to infinite-horizon formu-
lations.

However, performance of these predictive approaches is
largely dependent on the accuracy of the prediction model.
When applied to a linear system, or a system that does
not deviate significantly from a nominal operating point, the
linear MPC problem can be formulated and solved efficiently
as either a constrained linear or quadratic program [13].
However, if the operating range can deviate greatly from a
nominal linearization point, the formulation must account for
the nonlinear dynamics to ensure the optimization is performed
with respect to an accurate prediction of system evolution.
Moreover, even a fixed nonlinear model may be insufficient
to accurately predict the system’s motion due to modeling
errors and unmodeled dynamics. The use of a nonlinear
dynamics model also significantly increases the computational
complexity of the resulting nonlinear MPC (NMPC) problem,
which must be formulated as a constrained nonlinear program.

Therefore, there are two key challenges that must be
addressed in order to apply NMPC to challenging control
problems: maintaining an accurate model of uncertain, time-
varying dynamics and reducing complexity to increase com-
putational efficiency.

A. Model Accuracy

The issue of model accuracy for predictive control has
been addressed through various adaptation and learning-based
approaches. Most existing adaptive MPC approaches assume
a structured system model with uncertain parameters that
can be estimated online. These approaches then combine a
standard MPC formulation with an online parameter estimator,
e.g., a Luenberger observer or Kalman filter, to achieve more
accurate, deliberative actions [2, 9, 11].

However, treating all model uncertainty as parameters to
estimate can limit the overall model accuracy, especially when
the system is subject to complex, exogenous perturbations,
such as aerodynamic effects on an aerial vehicle. Learning-
based function approximation techniques can be applied to
address this issue. The resulting semi-structured approaches
augment a structured system model with a non-parametric,
online-learned component, e.g., via a Gaussian process [17].
The resulting model is then queried within the NMPC formu-
lation while continuing to adapt to model changes. While tech-
niques such as Gaussian process regression scale poorly with
the amount of training data, another kernel-based approach,
Locally Weighted Projection Regression (LWPR), summarizes
training data using linear basis functions [24]. The resulting

Proceedings of the 1st International Workshop on Robot Learning and Planning (RLP 2016)
in conjunction with 2016 Robotics: Science and Systems
June 18, 2016 – Ann Arbor, Michigan, USA

©2016 RLP 29

incremental updates enable fast model learning that is suitable
for finite-horizon control [15].

B. Computational Efficiency

Computational efficiency can be evaluated in terms of
increased solution speed and decreased redundant computa-
tion. For linear MPC formulations, there are a variety of
techniques aimed at increasing solution speed. Several of
these approaches leverage efficient convex optimization tech-
niques [7, 20] and exploit matrix structure in the LP or QP
formulations [26] to compute solutions quickly. Alternatively,
explicit MPC approaches precompute the optimal linear MPC
solutions for a polytopic decomposition of the state space,
reducing the complexity of online computation [1, 6]. Other
approaches, such as partial enumeration (PE) [18], balance the
strengths of the online and offline approaches and demonstrate
fast solution times on very large problems.

While some fast, online NMPC solution techniques have
been developed, they rely on iterative, approximate solution
techniques built around fast convex optimization solvers [3,
5, 12]. Consequently, they inherently cannot achieve the so-
lution speeds attained by linear MPC formulations. Explicit
NMPC [10] moves the optimization offline to achieve high-
speed online control, but it is known to scale poorly as the
resulting lookup table grows exponentially with the horizon
length and number of constraints. As a result, NMPC has not
been amenable to high-rate, realtime operation, particularly
on computationally constrained systems. The nonlinear partial
enumeration (NPE) algorithm [4] combines linear and nonlin-
ear formulations to achieve high-rate predictive control with a
nonlinear model, while also improving performance over time
to better approximate the NMPC solution. However, its depen-
dence on nonlinear optimization for performance improvement
limits scalability and the rate at which performance improves.

While some MPC algorithms seek to reduce the amount
of redundant computation performed by reusing past solu-
tions [7], they still must solve an optimization problem at
every control iteration. PE-based techniques achieve greater
efficiency through the online creation of a controller database,
which dramatically reduces the number of optimization prob-
lems that must be solved. However, since they assume the
dynamics model is fixed and accurate, the controllers produced
are invalidated if the dynamics change.

The construction of a database from past actions in order
to facilitate choosing future actions is also the foundation
of transfer learning and lifelong learning algorithms. These
learning-based approaches consider executing tasks, which,
by analogy to the PE approaches, can be viewed as a par-
ticular state-reference sequence. Transfer learning seeks to
use knowledge about past tasks to bootstrap learning a new
task [23], similar to efficient MPC strategies [7]. Lifelong
learning shares similarities with the PE approaches in that it
makes this knowledge transfer bidirectional to learn policies
that maximize performance over all past and present tasks [21].
However, the PE approaches maintain a finite set of controllers
that are updated through infrequent computation and do not

permit interpolation. Whereas lifelong learning algorithms,
such as ELLA [21] or OMTL [22], maintain a set of bases
that aid in reconstructing task models whenever new data is
received.

Therefore, we propose an Experience-driven Predictive
Control (EPC) methodology that combines aspects of NPE
with online model learning via LWPR. As in the PE tech-
niques, EPC leverages an online-updated database of past
experiences in order to achieve high-rate, locally-optimal
feedback control with constraint satisfaction. However, we also
parameterize the learned feedback control laws by the system
dynamics, enabling online adaptation to model perturbations.

II. APPROACH

In this section, we present the Experience-driven Predictive
Control (EPC) algorithm for fast, adaptive, nonlinear model
predictive control. In the context of predictive control, we
first define experience to be the relationship between pre-
vious states, references, and system dynamics models and
the optimal control law applied at that time. Past dynam-
ics models capture the effects of uncertainty on observed
system evolution, while previous states capture the system’s
behavior under optimal control policies for a given dynamics
model. Therefore, EPC constructs and leverages a two-part
representation of past experiences to improve the accuracy
of its finite-horizon lookahead. The first is the set of linear
basis functions maintained by the Locally Weighted Projection
Regression (LWPR) algorithm that capture observed variations
in the system dynamics. The second is a mapping from states
and references to locally optimal controllers that is updated
online and is parameterized by the current estimate of the
vehicle dynamics.

A. Online Model Adaptation via LWPR

Predictive control techniques for nonlinear systems employ
either a nonlinear dynamics model, which incurs the complex-
ity of solving nonlinear programs, or a more computation-
ally efficient local approximation of the nonlinear dynamics.
Therefore, given the nonlinear dynamics ẋ = f(x,u), nominal
state x∗ and nominal control u∗, we define x̄ = x − x∗ and
ū = u−u∗ and derive an affine approximation of the dynamics
via a first-order Taylor series expansion, x̄nom

k+1 = Ax̄k +
Būk+c. We can then extend this model with an online-learned
component via LWPR, which estimates perturbations to the
nominal model, including nonlinearities, modeling errors, and
unmodeled exogenous forces.

LWPR models a nonlinear function (from an input z to an
output y) by a Gaussian-weighted combination of local linear
functions [24]. These basis functions encapsulate all past dy-
namics information, in contrast to Gaussian processes, which
require storing all past training data. New linear functions are
added as required when the existing set of bases are insufficient
to represent new data with the desired accuracy. It also has a
forgetting factor to control rate of adaptation to model changes
by adjusting the effects of prediction error on the weight for
each basis. As a result, LWPR is robust to uninformative

30

or redundant data, can retain information capturing all past
experience, and can adapt its estimate to changing dynamics.

LWPR updates its estimate incrementally via partial least
squares, which has O(|z|) complexity, making it well-suited
to real-time operation. Partial least squares projects the inputs
onto a lower dimensional space defined by projection direction
vectors νr and ρr, as detailed in [24]. It also computes slope
coefficients βr for each projection direction and an offset β0 to
generate a prediction of a scalar output. Therefore, following
Mitrovic, et al. [15], we fit the dynamics model element-wise:
for the ith element in y, local linear model j (with rj projection
directions) is given by

Ψj(z) = β0 +
[
β1, . . . , βrj

]




νT
1

νT
2P1

...
νT
rj (P1 · · ·Prj−1)


 (z−mj)

= αj + βT
j (z−mj)

where Pr = I−diag(ρr)
[
νr, . . . ,νr

]T
. The prediction model

(consisting of Ni local models with weights wj defined by a
Gaussian kernel with mean mj and covariance Dj) is

pi(z) =
1

W

Ni∑

j=1

wj(z)Ψj(z)

wj(z) = exp
(
−1

2
(z−mj)

TDj(z−mj)

)

W =

Ni∑

j=1

wj(z)

Taking z =
[
xT
k uT

k

]T
and y = x̄k+1 − x̄nom

k+1, the predic-
tion output p̂ =

[
p0, p1, . . .

]T
gives the estimated perturbation

to the system dynamics at a query point z. The total predictive
dynamics model is then given by

x̄k+1 = xnom
k+1 + y

= Ax̄k + Būk + c + p̂

= Ax̄k + Būk + c̃ (1)

Since LWPR learns the perturbation model online, it may
initially return high-variance estimates when the system enters
a new region of the input space (i.e., values of z for which
the system has minimal experience). Therefore, to limit the
effects of the resulting transients in the estimate, we introduce
a simple gate based on the model uncertainty maintained by
LWPR. If model uncertainty is high at a given query point, we
instead use a zero-order hold on the previous estimate. As the
system continues to gain experience in its operating domain,
this gate will cease to be applied.

Finally, following the insight from L1 adaptive control [25],
we introduce a low-pass filter on the disturbance estimate
before it is incorporated into the predictive model (1). This
enables LWPR to learn the perturbation model quickly while
limiting changes to system dynamics to be within the band-
width of the system.

B. Receding-Horizon Control Formulation

The use of an affine model (1) that automatically adapts to
capture the effects of nonlinearities and unmodeled dynamics
permits a simplified optimal control formulation for EPC
relative to techniques such as nonlinear partial enumeration
(NPE), which requires solving a nonlinear program due to the
general nonlinear dynamics model. Taking the current state
as the nominal state, x∗ = x0, and given N reference states
r1, . . . , rN , let r̄ = r−x∗. We can then formulate the receding-
horizon control problem as a quadratic program:

argmin
ūk

N−1∑

k=0

1

2
(x̄k+1 − r̄k+1)TQ(x̄k+1 − r̄k+1)

+
1

2
(ūk − ūp̂)TR(ūk − ūp̂)

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxx̄k+1 ≤ gx

Guūk ≤ gu

∀ k = 0, . . . , N − 1

(2)

where we subtract ūp̂ (the control input corresponding to p̂)
to avoid penalizing disturbance compensation.

To simplify notation, define x =
[
x̄T

1, . . . , x̄
T
N

]T
, r =[

r̄T
1, . . . , r̄

T
N

]T
, u =

[
ūT

0, . . . , ū
T
N−1

]T
, up̂ =

[
ūT
p̂, . . . , ū

T
p̂

]T

B =




B 0 . . . 0
AB B . . . 0

...
...

. . .
AN−1B AN−2B . . . B


 , c =




c̃
(A + I) c̃

...∑N−1
i=0 Aic̃


 ,

Q = diag(Q, . . . ,Q), R = diag(R, . . . ,R), Gx =
diag(Gx, . . . ,Gx), Gu = diag(Gu, . . . ,Gu), gx =[
gT
x, . . . ,g

T
x

]T
, and gu =

[
gT
u, . . . ,g

T
u

]T
. Also, noting that

x̄0 = 0, we can rewrite (2) as

argmin
u

1

2
(x− r)TQ(x− r) +

1

2
(u− up̂)TR(u− up̂)

s.t. x = Bu+ c

Gxx ≤ gx
Guu ≤ gu

We can construct an equivalent QP entirely in terms of u
by substituting the dynamics constraints and dropping constant
terms in the cost function

argmin
u

1

2
uTHu+ hTu

s.t. Γu ≤ γ
(3)

where H = BTQB + R, h = BTQ(c− r)−Rup̂,

Γ =

[GxB
Gu

]
, and γ =

[
gx − Gxc
gu

]

Defining λ as the vector of Lagrange multipliers and Λ =
diag(λ), the first two Karush-Kuhn-Tucker (KKT) conditions

31

for optimality (stationarity and complementary slackness) for
the QP can then be written as

Hu+ h+ Γ Tλ = 0

Λ(Γu− γ) = 0
(4)

If we only consider the active constraints (i.e., with λ > 0)
for a given solution, we can reconstruct u and λ by solving a
linear system derived from (4), where the subscript a indicates
rows corresponding to the active constraints

[
H Γ T

a

Γ a 0

] [
u
λa

]
=

[
−h
γa

]

Assuming the active constraints are linearly independent
(Bemporad, et al. [1] suggest alternatives if this assumption
fails), the resulting QP control law u is affine in the predicted
state error r and parameterized by the system dynamics

u = E5r −


E5c− E4Rup̃ + E3




g+
x − Gxc
−g−x + Gxc

g+
u

−g−u



a


 (5)

where E1 = Γ aH−1, E2 = −(E1Γ
T
a)−1, E3 = ET

1E2,
E4 = H−1 + E3E1, and E5 = E4BTQ. Moreover, since
the coefficients in (5) are all functions of A, B, and c̃, the
overall control law κ(x0, r1, . . . , rN) can be written in terms
of a parameterized feedback gain matrix K and feedforward
vector kff

κ(x0, r1, . . . , rN) = K(A,B, c̃)r + kff(A,B, c̃) (6)

This parameterization also extends to the KKT condition
checks to determine whether a previously computed controller
is locally optimal. The active Lagrange multipliers λa follow
a similar form to the control law

λa = −E6r +


E6c− ET

3Rup̃ + E2




g+
x − Gxc
−g−x + Gxc

g+
u

−g−u



a




(7)

where E6 = ET
3BTQ.

Therefore, instead of storing the affine controller gains and
Lagrange multipliers required to evaluate the KKT conditions,
it is sufficient to store only the set of active constraints. The
controller and KKT matrices can then be reconstructed online
using (5), (7), and the current A,B, c̃. Consequently, this
parameterized formulation enables us to adapt and apply any
previously computed controller, when appropriate according
to the KKT conditions, even as the system dynamics evolve.
The complete algorithm is detailed below.

C. EPC Algorithm

As described in Alg. 1, EPC constructs a database defined
as a mapping M from experiences to controllers. At the
beginning of each control iteration, EPC queries the current
state and reference, as well as the current linear model from

Algorithm 1 Experience-driven Predictive Control

1: M← ∅ or Mprior
2: while control is enabled do
3: x← current system state
4: r ← current reference sequence
5: A,B, c̃← current dynamics model from LWPR
6: for each element mi ∈M do
7: Compute u,λ via (5),(7)
8: if x, r satisfy parameterized KKT criteria then
9: importancei ← current time, sort M

10: solution_found ← true
11: Apply affine control law (6) from mi

12: end if
13: end for
14: if solution_found is false then
15: Apply interm. control via (3) with slack variables
16: Update QP formulation with current model
17: Solve QP (3) to generate new controller
18: if |M| > max table size then
19: Remove element from M with minimum
20: importance
21: end if
22: Add new element
23: mnew = (x0,K1,K2,kff,importance) to M
24: end if
25: end while

LWPR, (A,B, c̃). It then queries the parameterized mapping
(line 6), and if the linear and nonlinear KKT conditions are
met for an element, applies the corresponding controller. If
no controller from prior experience is applicable (line 14),
it solves the QP (3) to add a new parameterized element
to the mapping, updating the stored experiences with the
current scenario. In parallel, EPC applies commands from a
short-horizon intermediate QP with slack on state constraints
(line 15), in order to maintain a desired control update rate.
As new controllers are added to the database, less valuable
controllers (indicated by a lower importance score) can be
removed (line 20) to bound the number of elements that may
be queried in one control iteration.

In addition to introducing adaptation to unmodeled dynam-
ics, the parameterization by experience and the introduction of
an online updated linear dynamics model eliminates the most
computationally expensive component of NPE - the nonlinear
program. Although the nonlinear program does not limit the
control rate in NPE, it does limit how quickly new controllers
can be computed, consequently limiting the practical horizon
length and increasing the dependence on the intermediate
controller. With its quadratic program formulation, EPC has
the advantage of faster solution times in the parallel thread,
which can be leveraged to reduce the dependence on the
intermediate controller or increase the prediction horizon.
Additionally, the nonlinear program solutions in NPE serve

32

(a) (b) (c) (d) (e)

Fig. 1: Snapshots of the quadrotor executing the elliptical trajectory that traverses the disturbance region (highlighted).

as fixed feedforward terms in the resulting affine control
laws, precluding a completely adaptive control strategy. With
EPC, the local controllers are fully parameterized, allowing
controllers computed using past experience to be adapted to
the present scenario.

III. RESULTS

To validate the performance of the EPC algorithm, we
conducted a series of simulations with a quadrotor micro-aerial
vehicle tracking a trajectory that crosses a region where strong
exogenous forces (e.g., wind) act on the vehicle.

The simulator and controller are built around ROS [19],
and the controller uses the qpOASES library [8] to solve the
quadratic programs. The simulation is run on a 2.9 GHz Intel
mobile processor. We employ a hierarchical control setup [14],
applying EPC separately to the translational and rotational
dynamics. The quadrotor is commanded to fly ten laps at
0.7 m/s around an elliptical trajectory (Fig. 1) that intersects a
region in which a constant disturbance torque is applied about
the x and y axes. Since the disturbance acts on the rotational
dynamics, we focus on the EPC used for attitude control in
following results. Since attitude controllers are commonly run
at rates exceeding 200 Hz [4], we note that a viable attitude
controller should return a control input within 5 ms.

To demonstrate safety under limited control authority, we
enforce constraints on the torque control inputs that are more
restrictive than the nominal commands that would be applied
to track the trajectory. As a result, these constraints are acti-
vated repeatedly as the vehicle tracks the trajectory. In order to
satisfy these constraints, EPC learns 22 different parameterized
feedback control laws, as shown in Fig. 2. Moreover, the
intermediate controller (denoted controller 0) is only applied
in the early laps, indicating that the majority of the controllers
are learned quickly and then reused in subsequent laps. This
intelligent controller switching also yields reliable constraint
satisfaction, as shown in Fig. 3.

Over the course of this trial, the mean time required to
query the controller database is 0.29 ms with a variance of
0.36 ms. This confirms that EPC is a computationally efficient
approach for adaptive model predictive control suitable for
high-rate applications, such as attitude control of a quadrotor.

In addition to constraint satisfaction, EPC substantially

1

2

3

4

5

6

7

8

9

10

Controller Index

 0 2 4 6 8 10 12 14 16 18 20 22

L
a

p

 0.0

0.014

0.037

0.100

0.273

0.742

2.017

5.483

Fig. 2: Learned controllers are reused in subsequent laps,
ultimately eliminating the dependence on the intermediate
controller (column 0). Colors denote the total usage time (in
seconds) for each controller.

t (s)

0 20 40 60 80 100 120

τ
x

-0.4

-0.2

0

0.2

0.4

t (s)

0 20 40 60 80 100 120

τ
y

-0.4

-0.2

0

0.2

0.4

Fig. 3: EPC successfully satisfies roll and pitch control input
constraints (dashed red lines) via controller switching

improves trajectory tracking accuracy in the presence of sud-
den changes to the system dynamics, as shown in Fig. 4.
As expected, tracking performance improves over time as
additional experience is gained. In addition to extending the
controller database, this experience refines the LWPR model.
Consequently, the model yields increasingly accurate estimates
of the exogenous torques, as shown in Fig. 5.

Figure 6 illustrates the performance of EPC relative to

33

0 10 20 30 40 50 60 70 80 90

x
 e

rr
o

r
(m

)

-0.1

0

0.1

0.2

Time (s)

0 10 20 30 40 50 60 70 80 90

y
 e

rr
o

r
(m

)

-0.1

0

0.1

0.2
No adaptation With LWPR adaptation

Fig. 4: Comparison of EPC with and without LWPR-based
adaptation

Time (s)

0 10 20 30 40 50 60 70 80 90

R
o
ll

d
is

tu
rb

a
n
c
e
 (

N
 m

)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
true estimated

Time (s)

0 10 20 30 40 50 60 70 80 90

P
it
c
h
 d

is
tu

rb
a
n
c
e
 (

N
 m

)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

true estimated

Fig. 5: LWPR accurately estimates the torque disturbances
about the x- and y axes as it tracks the elliptical trajectory

two baseline approaches: L1 adaptive control (L1AC)[25]
and an adaptive MPC formulation based on a state predictor
(Luenberger observer). The gains for the L1AC were selected
to match the nominal gains computed by EPC. The low-pass
filter bandwidth was also set equal for both controllers to
ensure a fair comparison of the adaptation laws. Since the
core EPC formulation is equivalent to a quadratic program
based MPC, we used EPC with the Luenberger observer as
the second baseline. Additionally, we loosen the constraints
on the control inputs applied in EPC for these simulations.
EPC embeds the disturbance estimate in the prediction model

0 10 20 30 40 50 60 70 80 90

x
 e

rr
o
r

(m
)

-0.1

-0.05

0

0.05

0.1

Time (s)

0 10 20 30 40 50 60 70 80 90

y
 e

rr
o
r

(m
)

-0.1

-0.05

0

0.05

0.1

L1AC EPC-Luenberger EPC-LWPR

Fig. 6: EPC with LWPR yields improved position tracking
error compared to L1 adaptive control (L1AC) and EPC with
a simple state predictor (EPC-Luenberger)

to enable constraint satisfaction, whereas L1AC adds it as a
compensation term to the resulting command. Therefore, it
lacks any safe means of constraint satisfaction, precluding a
comparison of constrained control performance.

As Fig. 6 shows, EPC (after obtaining sufficient experience)
reduces peak tracking error by an average of 26.8% relative
to L1 adaptive control. EPC (with LWPR) also reduces peak
tracking error by an average of 17.2% relative to the variant
with a Luenberger observer, confirming that the improvement
relative to L1AC is not simply due to integrating the estimate
into the prediction model. Moreover, these results show that
the combination of a predictive controller driven by an on-
line learned, reusable model can yield significantly improved
tracking performance.

Finally, to evaluate the generalizability of experience, we
consider a more complex scenario. Over the course of this
1000 s trial, the quadrotor is commanded to track a series
of smooth but random trajectories through the same envi-
ronment as before. Figures 7 and 8 show these trajectories,
which achieve maximum commanded velocities of 1.7 m/s
and accelerations of 5.1 m/s2. The vehicle dynamics are also
perturbed by a stochastic process emulating turbulent air flow,
introducing noise into the LWPR training data.

Due to the randomization, the quadrotor enters and exits
the disturbance region following a variety of trajectories.
The resulting disturbance estimate (Fig. 9) shows transient
behavior during the initial traversals of the disturbance region
(e.g. during the first 200 s of the trial), with disturbance

34

Fig. 7: Representative trajectories entering and exiting the
disturbance regions, taken from a 100 s window of the ran-
domized trial

estimate rise times greater than 1.5 s. However, these transients
do not reappear, even as the vehicle traverses the region
in previously unseen ways due to the variety of trajectories
executed. Moreover, the disturbance estimate has a consistent
rise time of approximately 0.5 s for the remainder of the
trial. This indicates that the experience gained through the
initial traversals is applicable to the numerous novel scenarios
encountered in the future and yields a consistent improvement
in disturbance estimation performance.

The controller also performs as expected. Even for this
long trial with diverse trajectories, EPC only computes 52
controllers to maintain constraint satisfaction (see Fig. 10).
Additionally, the time to query this database has a mean of
0.30 ms with a variance of 0.29 ms. This again illustrates the
computational efficiency of this Experience-driven Predictive
Control approach.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have presented the Experience-driven
Predictive Control (EPC) algorithm for fast, adaptive, non-
linear model predictive control. EPC constructs a database
of reusable feedback controllers that are parameterized by
the system dynamics. When combined with an online-learned
model of the system dynamics based on Locally-Weighted
Projection Regression (LWPR), this enables online adaption
to perturbations to the dynamics model. As the system gains
experience through operation, both the controller database and
the dynamics model are improved to yield increased tracking
accuracy, even in the presence of sudden changes in the
dynamics model. This also implies that if the system were
to start with some experience (e.g., from past operation), it

could further reduce the transient effects of learning.
The simulation trials presented in this work provide a

preliminary assessment of the EPC algorithm. We will there-
fore continue to evaluate the algorithm in simulation as well
as pursuing experimental validation of the approach running
onboard a small-scale quadrotor platform.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of ARL Grant
W911NF-08-2-0004.

REFERENCES

[1] A. Bemporad, V. Dua M. Morari, and E. N. Pistikopou-
los. The explicit linear quadratic regulator for constrained
systems. Automatica, 38:3–20, 2002.

[2] P. Bouffard, A. Aswani, and C. Tomlin. Learning-
based model predictive control on a quadrotor: Onboard
implementation and experimental results. In Proc. of the
IEEE Intl. Conf. on Robot. and Autom., St. Paul, MN,
May 2012.

[3] F. Debrouwere, M. Vukov, R. Quirynen, M. Diehl, and
J. Swevers. Experimental validation of combined nonlin-
ear optimal control and estimation of an overhead crane.
In Proc. of the Intl. Fed. of Autom. Control, pages 9617–
9622, Cape Town, South Africa, August 2014.

[4] V. Desaraju and N. Michael. Fast Nonlinear Model
Predictive Control via Partial Enumeration. In Proc. of
the IEEE Intl. Conf. on Robot. and Autom., Stockholm,
Sweden, May 2016.

[5] M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu,
F. Allgöwer, H. G. Bock, E.-D. Gilles, and J. P. Schlöder.
An Efficient Algorithm for Nonlinear Model Predictive
Control of Large-Scale Systems Part I: Description of
the Method. Automatisierungstechnik, 50(12):557–567,
2012.

[6] A. Domahidi, M. N. Zeilinger, M. Morari, and C. N.
Jones. Learning a Feasible and Stabilizing Explicit
Model Predictive Control Law by Robust Optimization.
In Proc. of the IEEE Conf. on Decision and Control,
pages 513–519. IEEE, December 2011.

[7] H. J. Ferreau, H. G. Bock, and M. Diehl. An online
active set strategy to overcome the limitations of explicit
MPC. International Journal of Robust and Nonlinear
Control, 18(8):816–830, May 2008.

[8] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and
M. Diehl. qpOASES: A parametric active-set algorithm
for quadratic programming. Mathematical Programming
Computation, 6(4):327–363, 2014.

[9] H. Fukushima, T.H. Kim, and T. Sugie. Adaptive
model predictive control for a class of constrained linear
systems based on the comparison model. Automatica, 43
(2):301–308, 2007.

[10] A. Grancharova and T.A. Johansen. Explicit Nonlinear
Model Predictive Control, volume 429. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

35

Fig. 8: Reference trajectory components for the randomized trial, with the disturbance region highlighted relative to the x-axis

Time (s)

0 100 200 300 400 500 600 700 800 900 1000R
o

ll
d

is
tu

rb
a

n
c
e

 (
N

 m
)

-0.1

0

0.1

0.2

Time (s)

0 100 200 300 400 500 600 700 800 900 1000P
it
c
h

 d
is

tu
rb

a
n

c
e

 (
N

 m
)

-0.2

-0.1

0

0.1

Fig. 9: Roll and pitch disturbance estimates for the randomized trial show an initial transient but have consistent performance
for the remainder of the trial

t (s)

0 200 400 600 800 1000

τ
x

-0.4

-0.2

0

0.2

0.4

t (s)

0 200 400 600 800 1000

τ
y

-0.4

-0.2

0

0.2

0.4

Fig. 10: EPC satisfies control input constraints for the entire
duration of the randomized trial while tracking a diverse set
of trajectories

[11] Y. K. Ho, H. K. Yeoh, and F. S. Mjalli. Generalized
Predictive Control Algorithm with Real-Time Simulta-
neous Modeling and Tuning. Industrial & Eng. Chem.

Research, 53(22):9411–9426, 2014.
[12] B. Houska, H. J. Ferreau, and M. Diehl. An auto-

generated real-time iteration algorithm for nonlinear
MPC in the microsecond range. Automatica, 47(10):
2279–2285, 2011.

[13] Johan Löfberg. Minimax approaches to robust model
predictive control. PhD thesis, Linköping University,
2003.

[14] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar.
Experimental evaluation of multirobot aerial control al-
gorithms. IEEE Robotics & Automation Magazine,
September 2010.

[15] D. Mitrovic, S. Klanke, and S. Vijayakumar. Adaptive
optimal feedback control with learned internal dynamics
models. From Motor Learn. to Inter. Learn. in Rob., 264:
65–84, 2010.

[16] K. S. Narendra and A. M. Annaswamy. Prentice Hall.
[17] C. Ostafew, A. Schoellig, and T. Barfoot. Learning-Based

Nonlinear Model Predictive Control to Improve Vision-
Based Mobile Robot Path-Tracking in Challenging Out-
door Environments. In Proc. of the IEEE Intl. Conf. on
Robot. and Autom., pages 4029–4036. IEEE, May 2014.

[18] G. Pannocchia, J. B. Rawlings, and S. J. Wright. Fast,

36

large-scale model predictive control by partial enumera-
tion. Automatica, 43(5):852–860, 2007.

[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y
Ng. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5,
2009.

[20] S. Richter, C. N. Jones, and M. Morari. Computational
Complexity Certification for Real-Time MPC With Input
Constraints Based on the Fast Gradient Method. IEEE
Trans. Autom. Control, 57(6):1391–1403, 2012.

[21] P. Ruvolo and E. Eaton. ELLA: An efficient lifelong
learning algorithm. In Intl. Conf. on Machine Learning,
pages 507–515, 2013.

[22] A. Saha, P. Rai, H. Daum e, and S. Venkatasubramanian.
Online learning of multiple tasks and their relationships.
In Intl. Conf. on Artif. Intell. and Stat., pages 643–651,
2011.

[23] M. E. Taylor and P. Stone. Transfer Learning for Rein-
forcement Learning Domains: A Survey. J. of Machine
Learning Research, 10:1633–1685, 2009.

[24] S. Vijayakumar, A. DSouza, and S. Schaal. Incremental
Online Learning in High Dimensions. Neural Comp., 17
(12):2602–2634, 2005.

[25] J. Wang, F. Holzapfel, E. Xargay, and N. Hovakimyan.
Non-Cascaded Dynamic Inversion Design for Quadrotor
Position Control with L1 Augmentation. In Proc. of
the CEAS Specialist Conf. on Guidance, Navigation &
Control, Delft, Netherlands, April 2013.

[26] Y. Wang and S. Boyd. Fast Model Predictive Control
Using Online Optimization. IEEE Trans. Control Syst.
Technol., 18(2):267–278, March 2010.

37

