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Abstract—Machine learning methods have been applied
to many motion planning algorithms including probabilistic
roadmap methods (PRM). There are many variants of these
methods and choosing the best one every time is hard and
depends on local properties of the environment. A successful
learning approach has been developed to offset this issue. This
learning approach was applied to PRMs to help decide intelli-
gently what method to utilize in dynamically created local regions
of the environment or task space. It used exact neighbor finding
approaches and removed the need to partition environments to
get improved results.

In this work we make further advances by introducing
approximate neighbor finder methods. It has been established
that approximate neighbor finding methods are faster than exact
methods, still work well in connecting nodes to edges in PRMs,
and that connection is robust to noise. We study what happens
when noise is introduced into learning by using approximate
methods instead of already studied exact methods. We show that
the impact of noise on learning depends on how much learning
needs to take place given the topology of the environment. Our
results demonstrate a correlation between heterogeneity and the
need for learning over a local region.

I. INTRODUCTION

Motion planning finds a valid path for an object as it moves
from one position to the next while avoiding obstacles in the
environment. The motion planning problem has been shown
to be P-SPACE hard [19], and so to mitigate this issue,

sampling based motion planning algorithms were intro-
duced. These methods sample important points in the en-
vironment while still maintaining probabilistic completeness
and in some cases asymptotic optimality [9]. This optimality
depends on being able to use the right strategy for the right
type of problem [3]. However, interesting problems are usually
not homogeneous in nature and so there has been no single
strategy that works well enough with all of them. In fact, there
are many variants of motion planning strategies and choosing
the best one is hard and problem dependent.

This issue motivated the introduction of machine learning
methods in motion planning. Various methods have been
introduced that utilize different machine learning methods. The
Lightning framework in [5] introduces learning from experi-
ence where the robot’s performance is stored in a hash table
and comparisons made with current performance to see if there
is an optimization. [1] used inverse reinforcement learning to
observe how robots behave and improve or copy them in the
next iteration termed “learning from demonstration”. More
recently machine learning was introduced to PRMs to help
improve the connection of nodes in a timely manner [10].

Adaptive Neighbor Connection in local regions (ANC-
Spatial) [11] makes use of reinforcement learning techniques

to help decide what connection method is suitable in a partic-
ular region of the environment that gets partitioned on the fly.
ANC-Spatial creates these regions by identifying neighbors
to the nodes that will be added to the roadmap. It creates a
dynamic region around them, after which it gets information
from these neighbors on the performance of past connection
methods. It uses this information to decide the next suitable
method to use. These neighbor finding approaches that ANC-
Spatial uses however are all exact. In this work we investigate
the effect of using approximate methods instead.

We introduce approximate neighbor finding approaches
which has shown to be faster and the state of the art choice for
connection. We investigate what happens when approximate
methods are used and how this introduction of noise into
the ANC-Spatial framework affects learning. We discuss how
good the neighbor finding information using this approximate
approach has to be for ANC-Spatial to learn from. We find
that the impact of noise is somewhat problem dependent. We
show that the greater the heterogeneity, the more important
it is to learn from a local set of neighbors, but this set need
not be exact. On the other hand, when the critical portions
of the environment lie in homogeneous regions, exact (or
even approximate) learning is not needed but a global learning
approach may be used.

II. RELATED WORK

In this section we first explain the use of nearest neighbor
finders in sampling-based strategies. We also review some of
the approximation methods that have been studied.

A. Sampling Based Motion Planning

Sampling based algorithms, probabilistic roadmaps (PRMs)
in particular, randomly sample the environment and then
connect nodes to construct a map that is queried to find a path
from a start to a goal [14]. There are a number of strategies
that take advantage of the topology of the environment to
optimize the roadmap construction phase of planning. PRM
variants consider different topology which include uniformly
generating samples in the environment [14], sampling near
obstacles [2], [4], [6], [12], [20], sampling with constraints
placed on the robots [17] and planning with uncertainty in the
environment [13]. These methods have different characteristics
and representation of the geometry of the robot in the planning
space.

B. Existing Connection Methods
Connection methods are primitives used in PRM to connect

nodes via edges together while building a roadmap. The
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connection method defined within our context comprises a
combination of a distance metric to get calculations on dis-
tance between configurations, a neighbor finding approach to
pair ”close/similar” configurations and a local planner to make
an edge if a feasible path exists between two configurations.
In this section we discuss these three primitives used during
the connection phase for PRMs, i.e. neighbor finding methods,
distance metrics and local planners.

1) Exact Neighbor Finding Methods:

• K-Closest /R-Closest methods: returns the k closest
neighbors to a node based on some distance metric, where
k is normally some small constant, and can be done in
logarithmic time. The advantage is that nodes are more
likely to be connectable by the local planner because
the volume of C-Space that the connection occupies is
smaller. A similar approach is the r-closest method which
returns all neighbors within a radius r of the node as
determined by some distance metric. Here, the size of the
neighbor set is not fixed but is dependent on the sampling
density.

• Randomized K-Closest variants: Two randomized vari-
ants of these methods are proposed in [16]: K-Closest,K-
Rand and R-Closest,K-Rand. K-Closest,K-Rand ran-
domly selects k neighbors from the k2 closest nodes,
where typically k2 = 3k. R-Closest,K-Rand selects k
random neighbors from those within a distance r. In
some cases, these methods outperform K-Closest as they
introduce some useful randomness.

2) Approximate Neighbor Finding Methods:

• Spill-tree-based nearest neighbor search [15] uses metric
tree data structures to sperate the plane into a left and
right hand side. The algorithm then uses non-backtracking
search to accurately return the nearest neighbor in
O(logn) by always searching one side of the tree. How-
ever, there is a chance of making the wrong decision when
a node is at the separation point between the two sides.
The algorithm fixes the issue by including a overlaping
buffer of size τ that guarrantees that all the nodes that
are not checked are at least τ away from the node.

• The Distance-based Projection onto Euclidean Space
algorithm (DPES) [18] uses distance-based projection
of high-dimensional metric spaces onto low-dimensional
euclidean spaces. This projection improves efficiency
because typically, not so many distance evaluations are
needed to compute nearest neighbors. [18] make use of
the approximate nearest neighbor algorithm (ANN) that
uses kd-trees to find nearest neighbors in O(dnlogn).

• Another technique MPNN [21] is an extension of the
ANN algorithm. MPNN is used to find approximate
nearest neighborhood by building multiple small kd-tree
throughout the C-space.

• In this work we use CGAL (Computational Geometry
Algorithms Library). This method has shown competence
by saving time without losing correctness [7]. CGAL
has different search data structures like k-d trees and

range and segment trees that allow it to find the nearest
neighbors in O(logn).

3) Distance Metrics: A distance metric is a function δ that
computes some “distance” between two configurations a =
〈a1, a2, . . . , ad〉 and b = 〈b1, b2, . . . , bd〉, i.e., δ(a, b) → R,
where d is the dimension of a configuration. A good distance
metric for PRMs predicts how likely a pair of nodes can
be connected. In this paper, we study two different distance
metrics:

• The scaled Euclidean distance metric is a variant

δ(a, b) =
√
s(pos mag)2 + (1− s)(ori mag)2

where pos mag is the Euclidean distance of the positional
dimensions, ori mag is the Euclidean distance of orien-
tational dimensions, and s is a weighting parameter. The
Euclidean distance metric gives equal weighting for all
dimensions. Scaled Euclidean is cheap and adequate in
many situations. However, it is not a good predictor when
the local planner differs from a simple straight line.

• Swept volume is the volume generated by the continuous
motion (translation and/or rotation) of a geometric object
through space. The swept volume distance is the volume
swept by the robot while following the motion prescribed
by the local planner. For an articulated linkage, this
becomes the sum of the swept volumes of each of the
links. This distance measure is expensive but accurate
for any local planner.

4) Local Planners: A local planner (LP) connects two
nodes with an edge based on defined closeness characteristics
[3]. There are many local planners that can be used to
connect two nodes a and b, and in this work we focused on
two: StraightLine and RotateAtS. We used the StraightLine
local planner because apart from being commonly used, it is
the fastest to compute and thus less computation overhead.
RotateAtS is useful as a comparison tool because it is an
offshoot of the straightline local planner but does some rotation
along the way. We also talk briefly about other local planning
method called TransformAtS and Toggle LP.

• StraightLine [3]: interpolates between two points in C-
Space checking intermediate points on a straight line in
C-Space.̃ Although this local planner is simple and fast,
it usually fails in cluttered environments where nearest
neighbors cannot be connected by a straight line due to
the large swept volume.

• RotateAtS [3]: reduces the swept volume near endpoints
by translating from a for some distance s toward b, chang-
ing all orientation degrees of freedom, and translating
again to get to b. The rotation allows the local planner
some chance to get around obstacles making it more
successful with samples that are close to obstacles.

• TransformAtS is a modification of RotateAtS that
changes all degrees of freedom one by one when it gets
to s.

• Toggle LP [8]: a straight-line connection between the
configurations a and b is attempted. If this fails then a
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third configuration n is generated that defines a triangle
between a, n and b and a path will be searched within
this triangle. This method extends local planning to a 2
dimensional plane of C space. Toggle LP shows a proof of
disconnection if no valid path exists but there is the added
overhead of generating the third node which will prove
expensive as the complexity of the problem increases.

C. Local Adaptive Neighborhood Connection (ANC-Spatial)
ANC-Spatial learns the best connection method to use on

a given node by analyzing the performance of connection
methods candidates in the vicinity of that node.

Figure 1 shows an example 2D point robot environment
that is largely free with a small cluttered region in the bottom
left corner. The roadmap is constructed with two candidate
connection methods: CMA (blue) and CMB (red). Overall,
the most successful connection method is CMA (indicated by
a greater number of blue edges). However, in the cluttered
region in the bottom left, CMB is much more successful.
When connecting node q (in green) to the roadmap, it is
important to take locality into account. The local learning
method, such as ANC-Spatial, wisely chooses CMB because
CMB is much more successful in this local area.

Fig. 1. To connect a new node q (in green) to the roadmap, method B (in
red) is more likely to succeed than A is despite the global popularity of A.

To locate the vicinity of the node, ANC-Spatial uses a
local neighbor finder that finds nearby nodes to the targetted
node. ANC-Spatial analyzes the performance of the connection
methods used in that region and based on that probability
distribution, picks the connection method that is most likely
to succeed. It then updates probabilities of the connection
methods based on the performance of the chosen method.
More details are presented in Algorithm 1.

Even if ANC-Spatial optimizes the choice of the connection
method, its main overhead is the time it takes to find neighbors.
In order to accurately learn, ANC-Spatial relies on a good
local neighbor finder to return the nearest neighbors to the
node. However, because of how frequent this operation is done,
ANC-Spatial also relies on a fast neighbor finding algorithm.

Algorithm 1 ANC-Spatial
Input. A connecting vertex q, a set of connection methods

CM , a locality neighbor finder Nflocal, a local planner
lp and a graph G

Output. A graph G with additional edges to/from q.
1: Initialize a set of connection method probabilities Pq to

the uniform distribution
2: Initialize Ninit = The set of neighbors to q using Nflocal
3: for each n ∈ Ninit do
4: Update Pq using all < cm, reward, cost > tuples

stored in n, ∀cm ∈ CM
5: end for
6: Randomly select a cmq according to Pq

7: N = cmq .FIND NEIGHBORS(q,G)
8: for each n ∈ N do
9: if lp.IS CONNECTABLE(q, n) then

10: G.ADD EDGE(q, n)
11: end if
12: Let xq be the reward and cq be the cost of the connec-

tion attempt
13: Update q and n with < cmq, xq, cq >
14: end for

III. APPLYING APPROXIMATION IN LOCAL REGION
IDENTIFICATION

The main goal of this work is to examine how approximate
neighbor finding affects the ability to learn in ANC-Spatial.
Recall that local learning examines method performance his-
tory over the nearest neighbors to determine which method
to connect a given node with. We show the impact of using
neighbor finding approximation during the learning process.
We study different levels of approximation as well as using
approximate information in different parts of the connection
process (i.e., learning regions, connecting nodes). Steps 2
and 7 of Algorithm 1 find k nearest neighbors to a node q.
We introduce approximation by replacing the exact neighbor
finding call with and approximate version in one or both of
these steps. Note that the neighbor finder used to define the
learning region and the one used to determine connection
canidates are likely not the same, thus computations are not
reused. For example, the k nearest neighbors as determined
by Euclidean distance may define the learning region but the
learned connection method may use LPSwept distance for
deciding which connections to attempt.

A. Experimental Setup

To investigate the performance of different approximation
levels in the context of learning, we construct a roadmap
until a representative query is solved. This query requires
the robot to traverse the entire breadth of the environment.
For performance, we look at time to build the roadmap.
Running time varies based on the time required to find nearest
neighbors and the affect of deteriorating neighbor quality as
approximation level increases. For all experiments, we use
OBPRM [2] sampling, set k = 10, and use straightline and
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RotateAtS [3] local planning. All experiments are averaged
over 10 runs.

1) Environments Studied: We examine the following envi-
ronments of varying heterogeneity:

• 2D Maze (see Figure 2): This is a 2D environment com-
posed of several narrow passages and cluttered regions.
A circular robot is expected to traverse from the bottom
left (in red) to the top right (in blue) of the environment.
This environment has 2 degrees of freedom.

• Planar Rooms (see Figure 3): This planar environment
has a long rectangular rigid robot in a heterogeneous
environment containing 8 different inter-connected rooms
of different types including cluttered, free, and blocked
regions. The robot must traverse each room to solve the
query from a placement in the bottom left room to a
placement in the top left room. A sample solution path
is shown. This environment has 3 degrees of freedom.

• 3D Tunnel (see Figure 4): This environment is composed
of two types of regions: free regions at the top and bottom
of the environment and a series of narrow passages (with
dead-ends) connecting them. A spinning top-shaped robot
must move from the top left to the bottom right. This
environment has 6 degrees of freedom.

Fig. 2. 2D Maze: The circular robot must traverse from the lower left corner
(in red) to the upper right corner (in blue) of the environment.

Fig. 3. Planar Rooms: A long rectangular rigid body robot must traverse
each room of varying topologies to solve the query. A sample path is shown
in red.

2) Methods Used: Recall that neighbor finders are used in
two places: inside a connection method to determine which
nodes to attempt connections (Connection NF) and inside the

Fig. 4. 3D Tunnel: The robot must travel the length of the narrow passage
to reach the free area at the bottom from the free area at the top.

spatial learner to determine the local learning region (Local
NF). We use the following neighbor finders:

• Exact — returns the exact k nearest neighbors as deter-
mined by some distance metric, implemented by CGAL
with ǫ = 0.

• Approximate — returns the approximate k nearest neigh-
bors as determined by some distance metric, implemented
by CGAL with 0 < ǫ ≤ 1. Values for ǫ are explored with
a stepsize of 0.25.

• Random — returns a random set of k neighbors irre-
spective of their proximity.

For a given neighbor finder, we must specify a distance
metric. In these results we use Scaled Euclidean with s =
{0.2, 0.5, 0.8} and LPSwept. Note that Scaled Euclidean with
s = 0.5 is the traditional Euclidean distance. Table I shows
the combinations of methods used.

IV. RESULTS AND DISCUSSION

We examine each environment in order of increasing com-
plexity.

A. 2D Maze

We first establish the impact of approximate neighbor
finding on the basic PRM algorithm. Here, no learning is
performed. These correspond to the Basic * entries in Table I.
We vary ǫ between 0 and 1 with a stepsize of 0.25. Recall
that ǫ = 0 is equivalent to exact nearest neighbors.

Figure 5 summarizes the performance for each distance
metric for both local planners. The robot is circular, thus
rotational degrees of freedom are not needed. For all approx-
imate computations (ǫ > 0), LPSwept is the slowest as the
extra computations it incurs are unnecessary. LPSwept rankw
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TABLE I
COMBINATIONS OF NEIGHBOR FINDER METHODS USED. ǫ0 IS THE BEST PERFORMING VALUE > 0.

Name Local NF Connection NF
Basic Exact(dm)

n/a
CGAL(ǫ = 0, dm)

Basic Approx(dm) CGAL(ǫ = ǫ0, dm)
Basic Random Random
Exact-Exact CGAL(ǫ = 0, Euclidean)

{CGAL(ǫ = 0, Euclidean), CGAL(ǫ = 0, Scaled Euclidean), CGAL(ǫ = 0, LPSwept)}Approx-Exact CGAL(ǫ = ǫ0, Euclidean)
Random-Exact Random
Exact-Approx CGAL(ǫ = 0, Euclidean)

{CGAL(ǫ = ǫ0, Euclidean), CGAL(ǫ = ǫ0, Scaled Euclidean), CGAL(ǫ = ǫ0, LPSwept)}Approx-Approx CGAL(ǫ = ǫ0, Euclidean)
Random-Approx Random

neighboring nodes in the same way as Euclidean but will take
longer to compute. Note that the extra time to compute swept
volume distances is mitigated by the fact that CGAL’s k-d tree
greatly reduces the number of distance computations required.
Thus, the increase in performance is lessened than with typical
brute force approaches that compute all distances afresh with
each nearest neighbor request.

In general, nearest neighbor computation is relatively quick
here, so less is gained by approximation. In fact, for this
environment, approximation runs slower as it requires more
samples to solve the query. The best-performing, non zero
approximation factor, ǫ0, is 0.25. This value will be used as
the fixed approximation factor for the remaining experiments
on this environment.

We next look at the impact of approximation on learning.
The first 3 bars in Figure 6 report the performance of different
neighbor finders for learning given exact connection methods
to choose from. Here, learning takes place over all possible
combinations of exact distance metrics and local planners to
provide a larger set of connection methods to learn over. We
see that approximate computation is as fast as exact. This is an
improvement from experiments with basic PRM, see Figure 5
This environment has some non-homogeneous regions. This
causes learning over random neighbors to perform poorly as it
cannot track the locality of good connection method decisions.

Fig. 6. Performance of different neighbor finders in learning and connection
in the 2D maze. ǫ0 = 0.25.

The last 3 bars in Figure 6 report the time required when
approximation is introduced into the connection methods.
We observe the same trend as in the first set, namely that
learning is useful (i.e., learning over random neighbors per-
forms poorly) but that learning may be approximate. We also

see a slight synergy between selecting exact or approximate
methods for learning and for connection as the Approx-Approx
combination performs better than Exact-Approx.

B. Planar Rooms

Results for the basic PRM without learning are reported in
Figure 7. We see that using the straightline local planner results
in far faster roadmap construction times. Since RotateAtS
already has a hard time solving this problem, adding noise
in the returned nearest neighbors worsens the situation. We
see that increasing ǫ only increases running times. In this
environment, ǫ = 0.25 will be used in the learning set.

Figure 8 shows results in the learning set. In this envi-
ronment the random neighbor finder manages to compete
with the other two methods. We see that when learning
on exact neighbor finding methods (first 3 bars), the three
local neighbor finders perform similarly. For the last 3 bars
(approximate methods during connection), we see a slight
increase for exact and approimate methods, but random stays
consistent.

Fig. 8. Performance of different neighbor finders in learning and connection
in the 2D heterogeneous maze. ǫ0 = 0.25.

C. 3D Tunnel

Again, we first establish the impact of approximate neighbor
finding on the basic PRM algorithm without learning. Figure 9
shows the performance of various approximation levels using
the different distance metrics for both local planners. As the
tunnels are smooth in nature with thick walls surrounding
them, it is easier to connect samples that are somewhat close
together, but not necessarily needing to be the exact closest.
Thus, this environment can not only tolerate more noise, it
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Fig. 5. ǫ study for various distance metrics in the 2D Maze for both local planners studied.

Fig. 7. ǫ study for various distance metrics in the Planar Rooms for both local planners studied.

greatly benefits from the faster neighbor finding times. Here,
the best approximation level (ǫ0) is 1.

The first 3 bars in Figure 10 display the running times of
different neighbor finders for learning given exact connection
methods to choose from. Recall that noise in identifying
neighbors for connection is tolerated much more here. Thus,
it is not surprising noise is tolerated in learning regions. In
fact, for connecting most of the critical nodes (i.e., those in
the tunnel), they lie in homogeneous regions (i.e., a narrow
passage with thick surrounding obstacle space). Here there is
not as much to learn, so selecting your learning region may
even be random.

The last 3 bars in Figure 10 show the performance of
learning when the underlying connection methods are approx-
imate. A similar trend is seen for these as for learning over
exact methods. When the critical portions of the environment
are homogeneous, learning from local neighbors (instead of
random neighbors) is not required.

V. CONCLUSION

In this work we presented an analysis of the effect of
using approximate neighbor finders in the local region learning
framework ANC-Spatial. Given that the main bottleneck of

Fig. 10. Performance of different neighbor finders in learning and connection
in the 3D Tunnel. ǫ0 = 1.

ANC-Spatial is finding nearest neighbors, we investigated
the benefits of allowing some level of noise to increase
efficiency. Our study shows that different environments can
tolerate different levels of noise (approximation) in either the
neighbors identified for learning or in the neighbors identified
for connection. We found that the greater the heterogeneity, the
more important it is to learn from a local set of neighbors (i.e.,
not a random set) but that this set need not be exact. When
the critical portions of the environment lie in homogeneous
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Fig. 9. ǫ study for various distance metrics in the 3D Tunnel for both local planners studied.

regions, exact (or even approximate) learning is not needed
and learning over a random set (or the global set) is sufficient.
In the future we plan to analyze other approximate methods
that use different data structures and to examine additional
types of environments.
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