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Abstract—A closed-form parameterization of the collision-
free configuration spaces (C-spaces) of robots and obstacles
represented as finite unions of ellipsoids is presented. These
objects can be quite general, including nonconvex bodies, and this
approach represents an alternative to polyhedral representations
of bodies. With this method, there is never any reason to sample
and discard configurations suspected of being in collision, and
existing sample-based planners can be modified to operate in
areas of C-space that are a priori guaranteed to be collision-free.
This all builds on the recent work on computing exact boundaries
of Minkowski sums and differences of two arbitrary ellipsoids
using affine transformations and the analytic properties of offset
surfaces.

A “highway” roadmap system is then constructed to connect
the collision-free regions. Unlike other skeletal/roadmap decom-
positions of C-space, collision checking in this C-space graph can
be eliminated not only for the vertices, but also for the edges,
and the problem is simplified to a search for a connected path
in an adjacency graph of the roadmap. We apply this approach
of “knowing where to look” for path planning in C-spaces with
narrow passages and demonstrate its potential by comparing
with the well known sample-based path planning method that
does not currently have the ability to take advantage of a priori
knowledge of collision-free regions of C-space.

I. INTRODUCTION

Path planning is probably the most studied problem in
robotics, and Probabilistic Road Map method (PRM) [1] and
Rapidly-exploring Random Trees (RRT) [2] are the two of
most successful algorithms so far. PRM is a multi-query
planner which can solve different planning requests in the
same map, whereas RRT is a single query planner which incre-
mentally grows from the starting configuration towards to the
goal configuration in a tree form. There are also many variants
of both PRM and RRT, and the majority of the planners fall
into the category of sampling based planning (SBP). A most
recent review on SBP methods can be found in [3]. Basically,
SBP methods randomly sample the C-space of the robot and to
connect the collision-free sample nodes to form a feasible path.
In contrast to most SBP methods which are probabilistic, there
are also a number of planners that are deterministic such as
[4, 5, 6]. SBP is easily extensible to robots with high degrees
of freedom, whereas deterministic planners tend to be better
at handling narrow passage problems. To take advantages of
both types of motion planners, several hybrid planners are
proposed [7, 8]. Specifically, [8] proposed a method named
M-sum, which used point-based Minkowski operations [9] to
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calculate a number of “subspaces of the configuration space”
(C-slices) for polyhedra in a random approach, and connect
configurations within and among the obtained C-slices to form
a roadmap. [10] also employed support vector machine (SVM)
classification technique to efficiently approximate a high-
dimensional configuration space to accelerate motion planning.

Minkowski operations, or equivalently Minkowski sum and
difference, have broad applications in CAD/CAM, assembly
planning [11] and computer-aided design [12]. In the context
of robot motion planning, given an obstacle P; and a robot
P, that can only translate, if one further defines a reference
point on P», then P; & P> will be the locus of the reference
point where Py NP, # @. Similarly, if P; is an “arena” in
which P, is translating, then P} © P, is the locus of the
reference point where Py NP, = P,. The sum is called a C-space
obstacle and the difference is called the P’s collision-free C-
space with respect to (w.r.t.) the arena. Some also view the
above two spaces together as the “contact space”. Despite the
simple mathematical definition of Minkowski operations, it is
well known that computing the representations of Minkowski
sum or difference is very computationally intensive. Many
algorithms have been proposed for numerically calculating
the Minkowski sum between polygons or polyhedron in either
2D or 3D environment [12, 13, 14, 15, 16]. The algorithms
either compute the convolution of geometric boundaries [14],
or employ polygon/polyhedra decompositions [12, 15, 16, 17].
Compared to the above numerical approach, it is shown that
the exact Minkowski sum and difference of two ellipsoids
can be computed in closed form [18]. For the closed-form
Minkowski sum operation, it can be applied to any ellipsoids at
any arbitrary orientation in any dimensional Euclidean space,
whereas the Minkowski difference operation can be used
wherever it exists. The approaches are entirely analytical and
in closed-form which is computationally efficient in nature.

Though ellipses/ellipsoids are relatively simple compared
to polygons/polyhedra, they are widely applied in collision
checking [19, 20, 21, 22]. Ellipsoids usually sever as the
boundary for humanoids in motion planning [23] and are also
used as the bounding volume for serial manipulators as in
[22]. It also shows up in the real-time collision-free navigation
between elliptical agents [24].

Due to the nice properties of ellipses/ellipsoids in computing
the Minkowski sum/difference and in approximating geometric
shapes, we develop a method based on ellipses/ellipsoids that
can be used in conjunction with existing path planning al-
gorithms, particularly sampling-based methods and roadmaps
based on cell decompositions, to provide better performance in
narrow-passage problems. The basic approach is to describe
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two spaces parametrically in closed form: (1) The space of
motions that is allowable for one ellipsoid (e.g., a single-
rigid-body robot) to move without sharing any point with
another ellipsoid (e.g., an obstacle); (2) the space of motions
in which one ellipsoid (e.g., the robot) can move while being
fully contained in another ellipsoid (e.g., the arena). Equipped
with these tools, it becomes possible a priori to “throw away”
vast volumes within C-space that correspond to robot/obstacle
or robot/arena-boundary collisions by not generating samples
in regions of C-space that are known not to be feasible. In
this way, the computational time and storage requirements for
sample-based methods are improved relative to sample-and-
discard strategies that are not informed a priori about the
features of the free space. Moreover, instead of generating
large numbers of random samples in the collision-free C-space
(the vast majority of which are discarded), the collision-free C-
space can be directly decomposed into cells, and an adjacency
graph can be constructed to encode the adjacency relationships
of the cells, and the adjacency graph can therefore serve as a
roadmap of the free space.

Several topics that have been studies in the literature pre-
viously may appear at a superficial level to be related to the
current formulation. For example, the rapid numerical charac-
terization of C-space obstacles as zero-one functions (‘zero’
corresponding to the free space and ‘one’ corresponding to
obstacle regions) has been investigated [25, 26], as has the
idea of marginalizing over C-space degrees of freedom and
superimposing obstacles treated as permeable boundaries, with
permeabilities added [27]. Though these numerical approaches
characterize the free space, and provide the ability to rapidly
answer the query as to whether a particular point in C-space is
feasible or not, they are not instructive in characterizing the set
of all feasible points in reasonable time, and they do not scale
well with increased dimensionality of the C-space. In contrast,
this paper presents a closed-form method for characterizing the
free space of a relatively broad family of objects (ellipsoids).
The finite union of these ellipsoids can be used to approximate
any robot, obstacle, or environmental boundary either by
inscription or circumscription, and the feasible part of the C-
space can be described by appropriate unions and intersections
of those for individual pairs of interacting ellipsoids.

The remainder of this paper is structured as follows. Sec.
IT reviews on the Minkowski sum and difference of two
ellipsoids in closed forms. Sec. III integrates two aspects of
the problem — parameterizing collision-free spaces of the
robot and obstacle, and robot and environmental boundary.
The intersection of the collision-free regions is detected with a
line-sweeping algorithm and saved as collision-free intervals.
Sec. IV proposes an approach to build a highway roadmap
system based on the midpoints of the collision-free intervals
along each sweep line. Also, the highway roadmap planner is
demonstrated with path planning examples, in which all of the
robot, the obstacles and the arena are constructed as the finite
unions of ellipses/ellipsoids. By comparing the computational
speed with some SBP methods, the efficacy and the potential,
especially for the narrow passage problem, is demonstrated.
Finally, Sec. V presents our conclusions.
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Fig. 1. (a) The example of one rabbit-shaped robot translating inside an

elliptical arena that contains elliptical obstacles. (b) The boundaries of the
collision-free space (CFS) for the robot-obstacle interaction (blue curves) and
those for the robot-environment interaction (red curves) for the rabbit face
and two ears, respectively. The CFS is illustrated as the green-shaded region.

II. RELATED WORK ON CLOSED-FORM
CHARACTERIZATION OF MINKOWSKI OPERATIONS OF
Two ELLIPSOIDS

In this section, we briefly review on the closed-form
Minkowski sum/difference on ellipses/ellipsoids in [18]. For
convenience, we use the word “ellipsoid” to describe a 2D
ellipse and also an n-dimensional hyper-ellipsoid when n > 3.
Given two convex sets P; and P, in R" each centered at the
origin, the Minkowski sum is defined as

PLOP, = {p1+p2| p1 €P,pr € P}, )
and the Minkowski difference is defined as [28]
PoP = () (Pi+p2). )

P2EP

Define two arbitrary n-dimensional ellipsoids as E; and E>
with the semi-axis lengths given by a; = [ay,...,a,] € R" and
ay = [d},...,a},) € R". Fix the center of mass at the origin and
align the principal axes along the axes of the reference frame,
ellipsoid E; will have the implicit and explicit equations as

3

where A(aj) is the n x n diagonal matrix with entry a; at the
location A;;, A™(a;) = [A(a;)]™ is the m"" power of this matrix,
and u(¢) denotes the hyper-sphere $"~! with n— 1 angles
¢ =[d1,...,0,—1]. A rotated ellipsoid of the same shape and
center of mass with ellipsoid E; has the implicit and explicit
expressions as & RjA~2(a;)RT& = 1 and & = R|A(a;)u(¢),
where R € SO(n) is a n x n rotation matrix.

As with any convex set, the Minkowski sum of E; and
E> is denoted as E; & E,. For the closed-form Minkowski
sum of ellipsoids, the basic idea is to first apply an affine
transformation onto E; and E, such that E, shrinks into a
sphere of the radius r = min{d},d}, ...,a,}. After calculating
the offset surface of the shrunk E; with radius r, the offset

®(x) =x’ A (a;)x =1 and x=A(a;)u(¢).
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Fig. 2. The detection scheme for the collision-free line segments on each
sweep line using the logic in Eq. 6.

surface is then stretched using the inverse of the previous affine
transformation.

The exact boundary of E; @ E» can be finally represented
in closed form as

Xep = RQA(az/r)RgR’l Xofs- (4)
where
Xofs(@) =x(¢) +rn(9),
_ Ve(x(¢9))
"9)= [Vax(o) ®

V&(x) =2A %(a))x.

Xors(¢) is a parameterized offset hyper-surface of an ori-
entable, closed, and differentiable hyper-surface x(¢) € R”
with the offset radius r is defined. In this case, x(¢) is the ex-
plicit expression of the shrunk version of Ey, and R/ describes
the orientation of the same ellipsoid. n is the outward-pointing
unit surface normal. and R, € SO(n) describes the orientation
of E,. Similarly, the Minkowski difference of two ellipsoids,
ie., E|OE, ={y|ly+x2 € E;,x; € E»}, can be calculated in
closed-form too. The only difference is that in (5) the offset
distance r is changed to —r.

III. CHARACTERIZATION OF THE COLLISION-FREE
C-SPACE WITH ROBOT, OBSTACLE(S) AND ENVIRONMENT
REPRESENTED AS FINITE UNIONS OF ELLIPSOIDS

In Sec. II, the parametric equations of the collision-free
boundaries of ellipsoid-ellipsoid interactions in two different
types were introduced.

In this section, we first present a detection scheme for the
collision-free spaces of finite unions of ellipsoids, given the
complete description of the collision-free space boundaries of
each ellipsoid-ellipsoid interaction. We use a simple planar
example to illustrate this detection scheme. In our example, the
robot is the union of three ellipses (which we call a “rabbit”
with a face and two ears). The scenario is that this rabbit
is allowed to roam inside an elliptical environment cluttered
by large elliptical obstacles (see Fig. 1 (a)). The boundaries
of the collision-free space for the robot-obstacle interaction

Fig. 3.  (a) The example of one rabbit-shaped robot translating inside
an ellipsoidal arena that contains an ellipsoidal obstacle. (b) The overlaid
boundaries of the collision-free space for the robot-obstacle interaction (blue-
shaded surfaces) and those for the robot-environment interaction (yellow-
shaded surfaces) for the rabbit face, ear 1 and ear 2.

Fig. 4. The collision-free space using the detection scheme for the example
in Fig. 3.

(blue) and those for the robot-environment interaction (red)
are shown in Fig. 1 (b). After overlaying all the boundaries
together, the collision-free space (the green-shaded region) are
the regions which are inside all the red curves and outside all
the blue curves.

The detection scheme can be applied to more general
cases as long as robot(s), obstacle(s) and environment(s) are
constructed by finite unions of ellipses. Suppose that the shape
of robot is a combination of k ellipses named Ey,E>,---,E}
and g», g3, -, gk represent the rigid body motions between the
first ellipse E; and the other ellipses Ej, E3,- - - , Ej. Each rigid-
body motion consists of a rotation-translation pair g; = (R;, t;).
Let the collision-free space for E1,E»,--- ,E; be C1,Ca, -+ ,Cy,
and then the collision-free space of the whole robot can be
characterized as C; N (g20C2)N(g30C3)N---N(groCy) where
gioCi=RCj+t,.

To detect these regions, we generate a set of sweep lines
parallel to the y-axis (in general, it can be a set of parallel
lines along any direction). For each sweep line, its intersection
points with all the curves are detected and saved in pairs,
or intervals. Here, let the intersecting line segments between
the sweep line and a red curve (robot-environment interaction
boundary) be Ps,, and those between the sweep line and a
blue curve (robot-obstacle interaction boundary) be Pp,. Then
the collision-free line segments on each line (Pcr) can be
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Fig. 5.

(a) the rabbit-shaped robot with 5 dofs — the translation of the rabbit (in x and y directions) and rotations of the rabbit face and two ears (¢,

o and 03), where 0 < @) <27, 0< 0p < m/2, and —7/2 < a3 < 0. (b) An example of the highway roadmap for the robot with 5 dofs. Each layer of the
roadmap representing a different combination of «;, o and 3. The layers of the roadmap are interconnected at the nodes which are relatively close to one
other (based on the Euclidean distance). A path is found using Dijkstra’s algorithm given the start and goal (shown as magenta lines). (c) The steps of the

motion of the robot overlaid onto the shortest path.

represented as

Per = PS] ﬂPS2 mPSnyk 7P01 UP()2 UPp (6)

where n; and n, are the numbers of ellipses that are used to
construct the environment and the obstacles, respectively. This
simple logic for the detection scheme of the collision-free line
segments is illustrated in Fig. 2.

For the 3D cases, robot(s), obstacle(s) and environment(s)
are constructed by finite unions of ellipsoids. To detect
the collision-free space of the whole robot for both robot-
environment and robot-obstacle interactions, we first slice
all the collision-free boundary surfaces along the z-axis. By
transforming 3D surfaces to a set of 2D curves with respect to
each z-coordinates, we are able to apply the detection scheme
for the 2D elliptical case. A 3D example is shown in Fig. 3 and
the resulting collision-free space using the detection scheme
is shown in Fig. 4.

We note that we can also slice along the x-axis or the
y-axis and sweep scan along one of the rest two axes as
well. Or we can combine the sampling schemes in different
directions together to obtain a richer sampling space. However,
in our highway roadmap planner which is based on cell
decompositions (see Sec. IV), sampling resolution is not very
critical, especially for smooth surfaces in our cases. Fig. 4
illustrates the collision-free space for the same example in
Fig. 3. The collision-free space is constructed by stacking all
the collision-free regions on each thin slice together along the
Z-axis.

no-k?

IV. PATH PLANNING APPROACH: HIGHWAY ROADMAP
PLANNER

A. Constructing highway roadmaps

To build a highway roadmap in 3D, we first construct a
planar highway roadmap in x-y plane, and then stack and
connect all the planar roadmaps together along the z-axis.
Here, we call it a “highway” roadmap since in the analogy,
this roadmap provides the routes that are furthest away from
the local obstacles. With the knowledge of collision-free line
segments along each sweep line, the collision-free space can
be naturally approximated by a union of trapezoidal cells, with

Fig. 7.
shaped robot with 2 dofs (only translations in x and y directions). (a) The
collision-free line segments and the midpoints on these line segments along
each sweep line, (b) the adjacency graph connecting these midpoints, i.e., the
highway roadmap, (shown as blue lines).

An example of generating the highway roadmap for the rabbit-

the two parallel sides of each trapezoidal cell as two neigh-
boring collision-free line segments in the vertical direction.
Two cells are adjacent if they share a common boundary,
i.e., a common horizontal extension. Since a trapezoid is a
convex set, any two points on the boundary of a trapezoidal
cell can be connected by a straight line segment that does not
intersect any obstacle. Therefore in our planner roadmap, we
can connect the midpoints of the horizontal extensions of the

16



Fig. 8. A planar example with the narrow passage problem. We note that the
rabbit’s two ears cannot fold back inward to the face since the rabbit model
has the range of motion on the ears, i.e., 0 < 0 <7/2, and —7w/2 < a3 <0.

adjacent trapezoidal cells, one at each time, and the resulting
adjacency matrix of these midpoints could serve as a roadmap
of the collision-free regions.

B. Path planning examples

In the planar case, when the robot only has 2 degrees
of freedom, the translations in x and y directions, with the
face and ear angles fixed. For the two dimensional case, the
Euclidean distance is used as the metric. Fig. 7 gives an
example of how a planar roadmap is connected on a x -y
plane. When the robot has more dofs, a higher dimensional
roadmap is needed. We also construct the rabbit-shaped robot
with 5 dofs, the translations in x and y directions, and the
rotations of the rabbit face and two ears, ¢, ap and O3,
respectively (see Fig. 5 (a)). In Fig. 5 (b), each layer of the
roadmap representing a different combination of ¢, o and
o3. The layers of the roadmap can be interconnected at the
nodes which are relatively close to one other (based on the
Euclidean distance). In this case, the metric used in the graph
search is |AP|+wi|Aoy|+walAap| + wi|Aas|, where |AP| is
the Euclidean distance between the centers of the faces and
|Aay|---|Aas| and wy---w3 are the absolute differences and
the corresponding weights of the face and two ear angles,
respectively. We note that self-collision between the different
parts of the robot can be eliminated in advance, and we focus
only on robot-obstacle and robot-environment interactions. A
pseudo code can be found in Alg. 1.

Like other methods that involve cell decompositions, the
path planning is usually done in two steps — first, the
planner determines the cells that contain the start and goal,
respectively, and then the planner searches for a path in
the adjacency graph. In our planner, we use the Dijkstra’s
algorithm [29] to search for the shortest path.

With our closed-form characterizations of the collision-free
C-space along with the highway roadmap, the collision check-

ing is almost unnecessary. Vast volumes within C-space that
correspond to robot/obstacle or robot/environmental-boundary
collisions can be thrown away directly. When using standard
methods for motion planning, collision checking can be com-
putational intensive, especially when the ratio of the volumes
between the collision-free C-space and the whole C-space is
small. Our complete characterization of the collision-free C-
space becomes particularly useful for the “narrow passage”
sampling problem. Also, with this highway roadmap system,
instead of evaluating the edges between nodes every time,
once the start and the goal are connected to the roadmap,
a path is instantly constructed. For simplicity, we design
the collision checking algorithm between ellipsoids by first
uniformly sampling points on the surfaces (curves for ellipse)
of the any two ellipsoids so that there are 50 sampled
vertices on an ellipse and 360 vertices on an ellipsoid. For
two ellipsoids, we substitute the coordinate x = (x,y,z)" of
the vertices of one ellipsoid into the implicit equation of
the other, and report collision when ®(x) > 1. In the later
section, we will refer this simple approach as the “traditional
collision checking” method. Though it is not the optimal
way to check collision between ellipsoids, the significantly
better performances of the proposed methods still manifest
the advantages of our characterization of the collision-free
C-spaces. The implementation of ellipsoid specific collision
checking algorithm such as [22] will be left to future work.

Algorithm 1 Highway Roadmap Algorithm
1: procedure SAMPLING AND LAYER CONNECTION
2: Given configuration P and ellipsoidal bodies E
3: PstartaPgoalaEarenaanbsaEmbot(alaa27a3)s where A =
{oy, 00, a3} represent the discretized angles as shown in
Fig. 5 with sizes of nj, ny and n3 respectively.
s fori i1, ..., np XnyXn3
Boundyin < Minkowski (EarenmEobSa Eobor (A(l)))
Piq < Highway (Bound,in)
M, < BuildAdjacencyMatrixWithinLayer (B,q)
My < My +M,q; //Form the complete adjacency ma-
trix
9: My < ConnectSubadjacencyMatrixBetweenLayers (M, )
0: Path < Dijkastra(Ma, Psart, Pgoal)

® DR

—_—

1) Planar examples: In this section, a path planning prob-
lem in the planar case is given. The robot, obstacle(s) and
environment are constructed by unions of ellipses (see Figs.
5 (c) and 8). We compare our approach with two popu-
lar sampling-based path planning algorithms, a probabilistic
roadmap [1] and a standard rapidly-exploring random tree
(RRT) [2]. In our examples, we compare the computational
speeds using the RRT and the PRM with our approach for 2
different scenarios — 1) when the volume of the collision-free
C-space is relatively large compared to that of the whole C-
space and 2) when the volume of the collision-free C-space is
relatively small and a narrow passage problem arises (Fig. 8).
The codes are all written using MATLAB 2015b and run on
a Lenovo ThinkCentre M83 with Intel(R) Core(TM) 17-4790
CPU@3.60GHz Processor and 12 GB RAM.

17



In the experiments, 5 trials are generated using both the
RRT and the PRM with the computational speeds shown in
Tabs. I and II. In our approach, the collision-free C-space
and the highway roadmap system only need to be constructed
once. In the first scenario (see Fig. 5), when the robot has a
large free motion space, less time is needed to find a feasible
path using the RRT and the PRM, with the average speed of
2.5 seconds and 5.02 seconds, respectively, compared to 3.3
seconds using our approach. But as the free motion space of
the robot significantly shrunk (as shown in Fig. 8), with our
approach, it only takes 37.3 seconds to compute a feasible
path, compared to an average speed of 1317 seconds using
the RRT and 1346 seconds using the PRM.

TABLE 1
THE TIME SPENT ON FINDING A PATH USING THE RRT BASED ON 5
TRIALS. EX. 1 AND EX. 2 ARE THE EXAMPLES SHOWN IN FIGS. 5 AND 8,
RESPECTIVELY. THE NUMBERS OF NODES USED IN EACH TRIAL TO FIND A
FEASIBLE PATH BY THE RRT ARE ALSO SHOWN IN THE TABLE.

RRT trial 1 2 3 4 5 Ave Ours
Ex. 1 time (s) 2.9 1.8 3.6 1.2 3.0 2.5 33
Ex.2 time (s) 1325 869 1616 824 1953 1317 53

# of nodes 3310 3046 4918 1913 5486 3734

TABLE II

THE TIME SPENT ON FINDING A PATH USING THE PRM BASED ON 5
TRIALS. EX. 1 AND EX. 2 ARE THE EXAMPLES SHOWN IN FIGS. 5 AND 8,

RESPECTIVELY.
PRM trial 1 2 3 4 5 Ave | Ours
Ex.1 time (s) 5.9 4.8 4.6 5.9 3.9 50 | 33
Ex.2 time (s) 1138 1117 2243 1257 977 1346 | 53

V. CONCLUSION

In this paper, we present an approach to parameterizing
the exact boundaries of the Minkowski sum and difference
of two ellipsoids. Based on this closed-form representation,
we present a new method for parameterizing the collision-
free regions of the C-space in robot motion planning. The
robot(s), obstacle(s) and the environment(s) can be described
by ellipses/ellipsoids or finite unions of ellipses/ellipsoids. The
parametric representations of the collision-free regions in C-
space are given. With our closed-form characterizations of the
free space, for single-rigid-body, a highway roadmap system
is constructed to connect the collision-free C-spaces. More
sophisticated ellipsoid-oriented collision checking algorithms
will be implemented to compare the planners’ performances
in a more comprehensive way.
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